464 research outputs found

    Development of an antibody fragment that stabilizes GPCR/G-protein complexes.

    Get PDF
    Single-particle cryo-electron microscopy (cryo-EM) has recently enabled high-resolution structure determination of numerous biological macromolecular complexes. Despite this progress, the application of high-resolution cryo-EM to G protein coupled receptors (GPCRs) in complex with heterotrimeric G proteins remains challenging, owning to both the relative small size and the limited stability of these assemblies. Here we describe the development of antibody fragments that bind and stabilize GPCR-G protein complexes for the application of high-resolution cryo-EM. One antibody in particular, mAb16, stabilizes GPCR/G-protein complexes by recognizing an interface between Gα and Gβγ subunits in the heterotrimer, and confers resistance to GTPγS-triggered dissociation. The unique recognition mode of this antibody makes it possible to transfer its binding and stabilizing effect to other G-protein subtypes through minimal protein engineering. This antibody fragment is thus a broadly applicable tool for structural studies of GPCR/G-protein complexes

    The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions

    Get PDF
    We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    Splines and Wavelets on Geophysically Relevant Manifolds

    Full text link
    Analysis on the unit sphere S2\mathbb{S}^{2} found many applications in seismology, weather prediction, astrophysics, signal analysis, crystallography, computer vision, computerized tomography, neuroscience, and statistics. In the last two decades, the importance of these and other applications triggered the development of various tools such as splines and wavelet bases suitable for the unit spheres S2\mathbb{S}^{2}, S3\>\>\mathbb{S}^{3} and the rotation group SO(3)SO(3). Present paper is a summary of some of results of the author and his collaborators on generalized (average) variational splines and localized frames (wavelets) on compact Riemannian manifolds. The results are illustrated by applications to Radon-type transforms on Sd\mathbb{S}^{d} and SO(3)SO(3).Comment: The final publication is available at http://www.springerlink.co

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games

    On the use of the group SO(4,2) in atomic and molecular physics

    Full text link
    In this paper the dynamical noninvariance group SO(4,2) for a hydrogen-like atom is derived through two different approaches. The first one is by an established traditional ascent process starting from the symmetry group SO(3). This approach is presented in a mathematically oriented original way with a special emphasis on maximally superintegrable systems, N-dimensional extension and little groups. The second approach is by a new symmetry descent process starting from the noninvariance dynamical group Sp(8,R) for a four-dimensional harmonic oscillator. It is based on the little known concept of a Lie algebra under constraints and corresponds in some sense to a symmetry breaking mechanism. This paper ends with a brief discussion of the interest of SO(4,2) for a new group-theoretical approach to the periodic table of chemical elements. In this connection, a general ongoing programme based on the use of a complete set of commuting operators is briefly described. It is believed that the present paper could be useful not only to the atomic and molecular community but also to people working in theoretical and mathematical physics.Comment: 31 page

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Curative resection of a primarily unresectable acinar cell carcinoma of the pancreas after chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acinar cell carcinoma (ACC) represents only 1–2% of pancreatic cancers and is a very rare malignancy. At the time of diagnosis only 50% of the tumors appear to be resectable. Reliable data for an effective adjuvant or neoadjuvant treatment are not available.</p> <p>Case presentation</p> <p>A 65-year old male presented with obstructive jaundice and non-specific upper abdominal pain. MRI-imaging showed a tumor within the head of the pancreas concomitant with Serum-Lipase and CA19-9. During ERCP, a stent was placed. Endosonographic fine needle biopsy confirmed an acinar cell carcinoma. Laparotomy presented an locally advanced tumor with venous infiltration that was consequently deemed unresectable. The patient was treated with five cycles of 5-FU monotherapy with palliative intention. Chemotherapy was well tolerated, and no severe complications were observed. Twelve months later, the patient was in stable condition, and CT-scanning showed an obvious reduction in the size of the tumor. During further operative exploration, a PPPD with resection of the portal vein was performed. Histopathological examination gave evidence of a diffuse necrotic ACC-tumor, all resection margins were found to be negative. Eighteen months later, the patient showed no signs of recurrent disease.</p> <p>Conclusion</p> <p>ACC responded well to 5-FU monochemotherapy. Therefore, neoadjuvant chemotherapy could be an option to reduce a primarily unresectable ACC to a point where curative resection can be achieved.</p

    The Diverse and Dynamic Nature of Leishmania Parasitophorous Vacuoles Studied by Multidimensional Imaging

    Get PDF
    An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms
    corecore