53 research outputs found

    Mammary gland chondrosarcoma in a German Shepherd bitch: A case report.

    Get PDF
    Canine mammary tumours are the most common tumours in intact bitches and they constitute about 25% of the neoplasm in this species followed by skin tumours (Benjamin et al.,1999) and their incidence varies from 198 to 622.6 cases per 100,000 dogs per year (Vail and MacEwen,2000). According to Yager et al.(1993),about 95% of them are of epithelial origin while the other 5% are mesenchymal. Sorenmo (2003) reported that half of the surgically removed mammary neoplasms in bitches were malignant. Mammary neoplasms in dogs that are similar to those in humans are of special concern to oncology researchers because they may be used as biological models in the search for more accurate diagnosis, more exact prognosis and a more efficient therapeutic procedures (Pierrepoint, 1985). Reports of this condition in indigenous Nigerian dogs have not been documented. In this report, we present the clinical and histopathological findings associated with mammary chondrosarcoma in a 13-year old German Shepherd bitch. Based on our review of literature, extra skeletal chondrosarcoma is extremely rare when compared with other types of canine mammary tumours (Menten,2002) The tumor, measured 8cm in diameter, was located in the right caudoabdominal mammary gland and the mass weighed 350g. It was very hard with many irregular nodular projections on the surface. Microscopically, a well differentiated chondrosarcoma of the mammary gland was diagnosed. The diagnosis of canine mammary chondrosarcoma is an uncommon occurrence in this environment.KEYWORDS: Dog, mammary gland, chondrosarcom

    Maxillofacial and mandibular phenotypes in the skulls of red Sokoto and Sahel goats in Nigeria: The role of dental abnormalities

    Get PDF
    This work examined phenotypic expressions in the anatomy of the mandible and maxillofacial region of the Red Sokoto and Sahel goats in Nigeria. The infraorbital foramen was placed above premolar two (PM2) in Red Sokoto but above premolar one (PM1) in Sahel. The Red Sokoto displayed interdigital septa (ruggae) which entered into mediolateral depressions of the opposing mandible but this was less prominent in the Sahel. Dental abnormalities were more pronounced in the Red Sokoto on the maxilla and mandibular rows. The facial and mandibular tuberosities were more prominent in the Red Sokoto goat and found to be more conspicuous in this breed with dental abnormalities. There was no significant difference between Calcium and Phosphorus in the craniofacial bones of goats with dental abnormalities compared to those without dental abnormalities in both breeds and in conclusion we thus suggest that the harsh environmental conditions of arid North West may be a greater predisposing factor for the negative dental profile of the Red Sokoto breed

    Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response

    Get PDF
    Dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while rise and fixation of mutators occur when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying physical biological mechanisms of stress response and adaptation

    Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection

    Get PDF
    Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems

    Enhanced biological carbon consumption in a high CO2 ocean

    Get PDF
    The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 Όatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change

    De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    Get PDF
    Background: Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results: We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to.3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions: Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character o

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake

    Full text link
    Phytoplankton abundance in tropical lakes is more often judged to be limited by nitrogen than phosphorus, but seldom does the evidence include controlled enrichments of natural populations. In January 1980 we performed the first experimental fertilization in an equatorial African soda lake, Lake Sonachi, a small, meromictic volcanic crater lake in Kenya. During our study the natural phytoplankton abundance was ca. 80 ÎŒg chl a /l, and the euphotic zone PO 4 and NH 4 concentrations were less than 0.5 ÎŒM. In the monimolimnion PO 4 reached 180 ÎŒM and NH 4 reached 4,600 ÎŒM. Replicate polyethylene cylinders (5 m long, 1.2 m 3 ) were enriched to attain 10 ÎŒM PO 4 and 100 ÎŒM NH 4 . Phytoplankton responses were measured as chlorophyll, cell counts and particulate N, P and C. After two days, the chlorophyll increase in the P treatment was significantly higher than the control ( P <0.01) while the N treatment was not. After five days the molar N/P ratio of seston was the same in the N treatment and control (23) but only 6 in the P treatment. The molar N/P ratio of seston in an unenriched Lake Sonachi sample was 21 and in samples from Lakes Bogoria and Elmenteita, two shallow soda lakes in Kenya, the ratios were 12 and 70 respectively. We conclude that limitation of phytoplankton abundance by phosphorus can occur even in some tropical African soda lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47742/1/442_2004_Article_BF00367954.pd

    Contributions of animal models to the study of mood disorders

    Full text link

    Fatal hyperlipaemia syndrome in a donkey (Equus asinus) in Ibadan, Oyo State, Nigeria

    No full text
    No Abstrac
    • 

    corecore