41 research outputs found

    Regional variation in hemoglobin distribution among individuals with chronic kidney disease: the ISN International Network of Chronic Kidney Disease (iNET-CKD) Cohorts

    Get PDF
    Introduction: Despite recognized geographic and sex-based differences in hemoglobin in the general population, these factors are typically ignored in patients with chronic kidney disease (CKD) in whom a single therapeutic range for hemoglobin is recommended. We sought to compare the distribution of hemoglobin across international nondialysis CKD populations and evaluate predictors of hemoglobin.Methods: In this cross-sectional study, hemoglobin distribution was evaluated in each cohort overall and stratified by sex and estimated glomerular filtration rate (eGFR). Relationships between candidate predictors and hemoglobin were assessed from linear regression models in each cohort. Estimates were subsequently pooled in a random effects model.Results: A total of 58,613 participants from 21 adult cohorts (median eGFR range of 17–49 ml/min) and 3 pediatric cohorts (median eGFR range of 26–45 ml/min) were included with broad geographic representation. Hemoglobin values varied substantially among the cohorts, overall and within eGFR categories, with particularly low mean hemoglobin observed in women from Asian and African cohorts. Across the eGFR range, women had a lower hemoglobin compared to men, even at an eGFR of 15 ml/min (mean difference 5.3 g/l, 95% confidence interval [CI] 3.7–6.9). Lower eGFR, female sex, older age, lower body mass index, and diabetic kidney disease were all independent predictors of a lower hemoglobin value; however, this only explained a minority of variance (R2 7%–44% across cohorts).Conclusion: There are substantial regional differences in hemoglobin distribution among individuals with CKD, and the majority of variance is unexplained by demographics, eGFR, or comorbidities. These findings call for a renewed interest in improving our understanding of hemoglobin determinants in specific CKD populations.</p

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFÎČR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Human plasma protein N-glycosylation

    Full text link

    Cre-mediated gene deletion in the mammary gland.

    No full text
    To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland

    Disordered FGF23 and mineral metabolism in children with CKD

    No full text
    In children with CKD, information is limited regarding the prevalence and determinants of fibroblast growth factor 23 excess and 1,25-dihyroxyvitamin D deficiency across the spectrum of predialysis CKD. This study characterized circulating concentrations of fibroblast growth factor 23 and 1,25-dihyroxyvitamin D, and investigated their interrelationships and associations with GFR and secondary hyperparathyroidism in children with CKD who were enrolled in the Chronic Kidney Disease in Children observational cohort study. Plasma fibroblast growth factor 23 concentrations and determinants of mineral metabolism were measured in 464 children ages 1-16 years with predialysis CKD. GFR was measured by plasma disappearance of iohexol in 70% of participants and estimated by the Chronic Kidney Disease in Children estimating equation using serum creatinine and cystatin C concentrations in the remainder of the participants. Participants were grouped according to CKD stage and by 10-ml/min categories of GFR. Median GFR for the cohort was 45 ml/min per 1.73 m(2) (interquartile range=33-57; range=15-109). Plasma fibroblast growth factor 23 concentration was above the normal range in 67% of participants (with higher levels observed among participants with lower GFR) before higher levels of serum parathyroid hormone and phosphorus were observed. Plasma fibroblast growth factor 23 levels were 34% higher in participants with glomerular disease than in participants with nonglomerular disease, despite similar GFR. Serum phosphorus levels, adjusted for age, were significantly lower at GFR of 60-69 ml/min per 1.73 m(2) than higher GFR, but thereafter they became higher in parallel with fibroblast growth factor 23 as GFR declined. Serum 1,25-dihyroxyvitamin D concentrations were lower in those participants with low GFR values, high fibroblast growth factor 23 levels, 25-hydroxyvitamin D deficiency, and proteinuria. Secondary hyperparathyroidism was present in 55% of participants with GFR<50 ml/min per 1.73 m(2). In children with predialysis CKD, high plasma fibroblast growth factor 23 is the earliest detectable abnormality in mineral metabolism, and levels are highest in glomerular diseases

    Isolation of amniotic stem cell lines with potential for therapy Nat Biotechnol

    No full text
    Stem cells capable of differentiating to multiple lineages may be valuable for therapy. We report the isolation of human and rodent amniotic fluid-derived stem (AFS) cells that express embryonic and adult stem cell markers. Undifferentiated AFS cells expand extensively without feeders, double in 36 h and are not tumorigenic. Lines maintained for over 250 population doublings retained long telomeres and a normal karyotype. AFS cells are broadly multipotent. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. Examples of differentiated cells derived from human AFS cells and displaying specialized functions include neuronal lineage cells secreting the neurotransmitter L-glutamate or expressing G-protein-gated inwardly rectifying potassium channels, hepatic lineage cells producing urea, and osteogenic lineage cells forming tissue-engineered bone
    corecore