38 research outputs found

    Estimation d'un mélange de distributions alpha-stables à partir de l'algorithme EM

    No full text
    International audienceLe modĂšle Gaussien est souvent utilisĂ© dans de nombreuses applications. Cependant, cette hypothĂšse est rĂ©ductrice. Par exemple, il est possible que les donnĂ©es fournies par des capteurs ne soient pas symĂ©triques et/ou prĂ©sentent une dĂ©croissance rapide au niveau de la queue de la distribution. De plus, il est rare que la densitĂ© de probabilitĂ© reprĂ©sentant les donnĂ©es soit unimodale. Il existe des algorithmes permettant l'estimation d'un mĂ©lange de distributions. L'algorithme EspĂ©rance-Maximisation (EM) permet entre autre d'estimer un mĂ©lange de distributions Gaussiennes. Nous proposons dans ce papier d'Ă©tendre l'algorithme EM pour estimer un mĂ©lange de distributions α-stables. Un des objectifs futurs de ce papier est d'appliquer la notion de fonctions de croyance continues sachant que les informations fournies par les sources peuvent ĂȘtre modĂ©lisĂ©es par un mĂ©lange de densitĂ© de probabilitĂ© α-stables

    Distributions alpha-stable pour la caractérisation de phénomÚnes aléatoires observés par des capteurs placés dans un environnement maritime

    Get PDF
    Le travail rĂ©alisĂ© dans le cadre de cette thĂšse a pour but de caractĂ©riser des signaux alĂ©atoires, rencontrĂ©s dans le domaine aĂ©rien et sous-marin, en s appuyant sur une approche statistique. En traitement du signal, l'analyse statistique a longtemps Ă©tĂ© fondĂ©e sous l'hypothĂšse de GaussianitĂ© des donnĂ©es. Cependant, ce modĂšle n'est plus valide dĂšs lors que la densitĂ© de probabilitĂ© des donnĂ©es se caractĂ©rise par des phĂ©nomĂšnes de queues lourdes et d'asymĂ©trie. Une famille de lois est particuliĂšrement adaptĂ©e pour reprĂ©senter de tels phĂ©nomĂšnes : les distributions a-stables. Dans un premier temps, les distributions a-stables ont Ă©tĂ© prĂ©sentĂ©es et utilisĂ©es pour estimer des donnĂ©es synthĂ©tiques et rĂ©elles, issues d'un sondeur monofaisceau, dans une stratĂ©gie de classification de fonds marins. La classification est rĂ©alisĂ©e Ă  partir de la thĂ©orie des fonctions de croyance, permettant ainsi de prendre en compte l'imprĂ©cision et l'incertitude liĂ©es aux donnĂ©es et Ă  l'estimation de celles-ci. Les rĂ©sultats obtenus ont Ă©tĂ© comparĂ©s Ă  un classifieur BayĂ©sien. Dans un second temps, dans le contexte de la surveillance maritime, une approche statistique Ă  partir des distributions a-stables a Ă©tĂ© rĂ©alisĂ©e afin de caractĂ©riser les Ă©chos indĂ©sirables rĂ©flĂ©chis par la surface maritime, appelĂ©s aussi fouillis de mer, oĂč la surface est observĂ©e en configuration bistatique. La surface maritime a d'abord Ă©tĂ© gĂ©nĂ©rĂ©e Ă  partir du spectre d'Elfouhaily puis la Surface Équivalente Radar (SER) de celle-ci a Ă©tĂ© dĂ©terminĂ©e Ă  partir de l'Optique Physique (OP). Les distributions de Weibull et ont Ă©tĂ© utilisĂ©es et comparĂ©es au modĂšle a-stable. La validitĂ© de chaque modĂšle a Ă©tĂ© Ă©tudiĂ©e Ă  partir d'un test de Kolmogorov-Smirnov.The purpose of this thesis is to characterize random signals, observed in air and underwater context, by using a statistical approach. In signal processing, the hypothesis of Gaussian model is often used for a statistical study. However, the Gaussian model is not valid when the probability density function of data are characterized by heavy-tailed and skewness phenomena. A family of laws can fit these phenomena: the a-stable distributions. Firstly, the a-stable distribution have been used to estimate generated and real data, extracted from a mono-beam echo-sounder, for seabed sediments classification. The classification is made by using the theory of belief functions, which can take into account the imprecision and uncertainty of data and theirs estimations. The results have been compared to a Bayesian approach. Secondly, in a context a marine surveillance, a statistical study from the a-stable distribution has been made to characterize undesirable echo reflected by a sea surface, called sea clutter, where the sea surface is considered in a bistatic configuration. The sea surface has been firstly generated by the Elfouhaily sea spectrum and the Radar Cross Section (RCS) of the sea surface has been computed by the Physical Optics (PO). The Weibull and distributions have been used and the results compared to the a-stable model. The validity of each model has been evaluated by a Kolmogorov-Smirnov test.BREST-SCD-Bib. electronique (290199901) / SudocSudocFranceF

    Continuous belief functions and α-stable distributions

    No full text
    International audienceThe theory of belief functions has been formalized in continuous domain for pattern recognition. Some applications use assumption of Gaussian models. However, this assumption is reductive. Indeed, some data are not symmetric and present property of heavy tails. It is possible to solve these problems by using a class of distributions called α-stable distributions. Consequently, we present in this paper a way to calculate pignistic probabilities with plausibility functions where the knowledge of the sources of information is represented by symmetric α-stable distributions. To validate our approach, we compare our results in special case of Gaussian distributions with existing methods. To illustrate our work, we generate arbitrary distributions which represents speed of planes and take decisions. A comparison with a Bayesian approach is made to show the interest of the theory of belief functions

    Influence de l'estimation des paramÚtres de texture pour la classification de données complexes

    Get PDF
    National audienceThis paper shows a classification of data based on the theory of belief functions. The complexity of this problem can be seen as two ways. Firstly, data can be imprecise and/or uncertain. Then, it is difficult to choose the right model to represent data. Gaussian model is often used but is limited when data are complex. This model is a particular case of α-stable distributions. Classification is divided into two steps. Learning step allows to modelize data by a mixture of α-stable distributions and Gaussian distributions. Test step allows to classify data with the theory of belief functions and compare the two models. The classification is realized firstly on generated data and then on real data type sonar images

    A study of the relationships between oligonucleotide properties and hybridization signal intensities from NimbleGen microarray datasets

    Get PDF
    Well-defined relationships between oligonucleotide properties and hybridization signal intensities (HSI) can aid chip design, data normalization and true biological knowledge discovery. We clarify these relationships using the data from two microarray experiments containing over three million probes from 48 high-density chips. We find that melting temperature (Tm) has the most significant effect on HSI while length for the long oligonucleotides studied has very little effect. Analysis of positional effect using a linear model provides evidence that the protruding ends of probes contribute more than tethered ends to HSI, which is further validated by specifically designed match fragment sliding and extension experiments. The impact of sequence similarity (SeqS) on HSI is not significant in comparison with other oligonucleotide properties. Using regression and regression tree analysis, we prioritize these oligonucleotide properties based on their effects on HSI. The implications of our discoveries for the design of unbiased oligonucleotides are discussed. We propose that isothermal probes designed by varying the length is a viable strategy to reduce sequence bias, though imposing selection constraints on other oligonucleotide properties is also essential

    Alpha-stable distributions for the characterization of random phenomena observed by sensors in a marine environment

    No full text
    Le travail rĂ©alisĂ© dans le cadre de cette thĂšse a pour but de caractĂ©riser des signaux alĂ©atoires, rencontrĂ©s dans le domaine aĂ©rien et sous-marin, en s’appuyant sur une approche statistique. En traitement du signal, l'analyse statistique a longtemps Ă©tĂ© fondĂ©e sous l'hypothĂšse de GaussianitĂ© des donnĂ©es. Cependant, ce modĂšle n'est plus valide dĂšs lors que la densitĂ© de probabilitĂ© des donnĂ©es se caractĂ©rise par des phĂ©nomĂšnes de queues lourdes et d'asymĂ©trie. Une famille de lois est particuliĂšrement adaptĂ©e pour reprĂ©senter de tels phĂ©nomĂšnes : les distributions α-stables. Dans un premier temps, les distributions α-stables ont Ă©tĂ© prĂ©sentĂ©es et utilisĂ©es pour estimer des donnĂ©es synthĂ©tiques et rĂ©elles, issues d'un sondeur monofaisceau, dans une stratĂ©gie de classification de fonds marins. La classification est rĂ©alisĂ©e Ă  partir de la thĂ©orie des fonctions de croyance, permettant ainsi de prendre en compte l'imprĂ©cision et l'incertitude liĂ©es aux donnĂ©es et Ă  l'estimation de celles-ci. Les rĂ©sultats obtenus ont Ă©tĂ© comparĂ©s Ă  un classifieur BayĂ©sien. Dans un second temps, dans le contexte de la surveillance maritime, une approche statistique Ă  partir des distributions α-stables a Ă©tĂ© rĂ©alisĂ©e afin de caractĂ©riser les Ă©chos indĂ©sirables rĂ©flĂ©chis par la surface maritime, appelĂ©s aussi fouillis de mer, oĂč la surface est observĂ©e en configuration bistatique. La surface maritime a d'abord Ă©tĂ© gĂ©nĂ©rĂ©e Ă  partir du spectre d'Elfouhaily puis la Surface Équivalente Radar (SER) de celle-ci a Ă©tĂ© dĂ©terminĂ©e Ă  partir de l'Optique Physique (OP). Les distributions de Weibull et ont Ă©tĂ© utilisĂ©es et comparĂ©es au modĂšle α-stable. La validitĂ© de chaque modĂšle a Ă©tĂ© Ă©tudiĂ©e Ă  partir d'un test de Kolmogorov-Smirnov.The purpose of this thesis is to characterize random signals, observed in air and underwater context, by using a statistical approach. In signal processing, the hypothesis of Gaussian model is often used for a statistical study. However, the Gaussian model is not valid when the probability density function of data are characterized by heavy-tailed and skewness phenomena. A family of laws can fit these phenomena: the α-stable distributions. Firstly, the α-stable distribution have been used to estimate generated and real data, extracted from a mono-beam echo-sounder, for seabed sediments classification. The classification is made by using the theory of belief functions, which can take into account the imprecision and uncertainty of data and theirs estimations. The results have been compared to a Bayesian approach. Secondly, in a context a marine surveillance, a statistical study from the α-stable distribution has been made to characterize undesirable echo reflected by a sea surface, called sea clutter, where the sea surface is considered in a bistatic configuration. The sea surface has been firstly generated by the Elfouhaily sea spectrum and the Radar Cross Section (RCS) of the sea surface has been computed by the Physical Optics (PO). The Weibull and distributions have been used and the results compared to the α-stable model. The validity of each model has been evaluated by a Kolmogorov-Smirnov test

    Distributions alpha-stable pour la caractérisation de phénomÚnes aléatoires observés par des capteurs placés dans un environnement maritime

    No full text
    The purpose of this thesis is to characterize random signals, observed in air and underwater context, by using a statistical approach. In signal processing, the hypothesis of Gaussian model is often used for a statistical study. However, the Gaussian model is not valid when the probability density function of data are characterized by heavy-tailed and skewness phenomena. A family of laws can fit these phenomena: the α-stable distributions. Firstly, the α-stable distribution have been used to estimate generated and real data, extracted from a mono-beam echo-sounder, for seabed sediments classification. The classification is made by using the theory of belief functions, which can take into account the imprecision and uncertainty of data and theirs estimations. The results have been compared to a Bayesian approach. Secondly, in a context a marine surveillance, a statistical study from the α-stable distribution has been made to characterize undesirable echo reflected by a sea surface, called sea clutter, where the sea surface is considered in a bistatic configuration. The sea surface has been firstly generated by the Elfouhaily sea spectrum and the Radar Cross Section (RCS) of the sea surface has been computed by the Physical Optics (PO). The Weibull and distributions have been used and the results compared to the α-stable model. The validity of each model has been evaluated by a Kolmogorov-Smirnov test.Le travail rĂ©alisĂ© dans le cadre de cette thĂšse a pour but de caractĂ©riser des signaux alĂ©atoires, rencontrĂ©s dans le domaine aĂ©rien et sous-marin, en s’appuyant sur une approche statistique. En traitement du signal, l'analyse statistique a longtemps Ă©tĂ© fondĂ©e sous l'hypothĂšse de GaussianitĂ© des donnĂ©es. Cependant, ce modĂšle n'est plus valide dĂšs lors que la densitĂ© de probabilitĂ© des donnĂ©es se caractĂ©rise par des phĂ©nomĂšnes de queues lourdes et d'asymĂ©trie. Une famille de lois est particuliĂšrement adaptĂ©e pour reprĂ©senter de tels phĂ©nomĂšnes : les distributions α-stables. Dans un premier temps, les distributions α-stables ont Ă©tĂ© prĂ©sentĂ©es et utilisĂ©es pour estimer des donnĂ©es synthĂ©tiques et rĂ©elles, issues d'un sondeur monofaisceau, dans une stratĂ©gie de classification de fonds marins. La classification est rĂ©alisĂ©e Ă  partir de la thĂ©orie des fonctions de croyance, permettant ainsi de prendre en compte l'imprĂ©cision et l'incertitude liĂ©es aux donnĂ©es et Ă  l'estimation de celles-ci. Les rĂ©sultats obtenus ont Ă©tĂ© comparĂ©s Ă  un classifieur BayĂ©sien. Dans un second temps, dans le contexte de la surveillance maritime, une approche statistique Ă  partir des distributions α-stables a Ă©tĂ© rĂ©alisĂ©e afin de caractĂ©riser les Ă©chos indĂ©sirables rĂ©flĂ©chis par la surface maritime, appelĂ©s aussi fouillis de mer, oĂč la surface est observĂ©e en configuration bistatique. La surface maritime a d'abord Ă©tĂ© gĂ©nĂ©rĂ©e Ă  partir du spectre d'Elfouhaily puis la Surface Équivalente Radar (SER) de celle-ci a Ă©tĂ© dĂ©terminĂ©e Ă  partir de l'Optique Physique (OP). Les distributions de Weibull et ont Ă©tĂ© utilisĂ©es et comparĂ©es au modĂšle α-stable. La validitĂ© de chaque modĂšle a Ă©tĂ© Ă©tudiĂ©e Ă  partir d'un test de Kolmogorov-Smirnov
    corecore