29 research outputs found

    The Shape of Species Abundance Distributions Across Spatial Scales

    Get PDF
    Species abundance distributions (SADs) describe community structure and are a key component of biodiversity theory and research. Although different distributions have been proposed to represent SADs at different scales, a systematic empirical assessment of how SAD shape varies across wide scale gradients is lacking. Here, we examined 11 empirical large-scale datasets for a wide range of taxa and used maximum likelihood methods to compare the fit of the logseries, lognormal, and multimodal (i.e., with multiple modes of abundance) models to SADs across a scale gradient spanning several orders of magnitude. Overall, there was a higher prevalence of multimodality for larger spatial extents, whereas the logseries was exclusively selected as best fit for smaller areas. For many communities the shape of the SAD at the largest spatial extent (either lognormal or multimodal) was conserved across the scale gradient, despite steep declines in area and taxonomic diversity sampled. Additionally, SAD shape was affected by species richness, but we did not detect a systematic effect of the total number of individuals. Our results reveal clear departures from the predictions of two major macroecological theories of biodiversity for SAD shape. Specifically, neither the Neutral Theory of Biodiversity (NTB) nor the Maximum Entropy Theory of Ecology (METE) are able to accommodate the variability in SAD shape we encountered. This is highlighted by the inadequacy of the logseries distribution at larger scales, contrary to predictions of the NTB, and by departures from METE expectation across scales. Importantly, neither theory accounts for multiple modes in SADs. We suggest our results are underpinned by both inter- and intraspecific spatial aggregation patterns, highlighting the importance of spatial distributions as determinants of biodiversity patterns. Critical developments for macroecological biodiversity theories remain in incorporating the effect of spatial scale, ecological heterogeneity and spatial aggregation patterns in determining SAD shape.Peer reviewe

    Shifts in timing and duration of breeding for 73 boreal bird species over four decades

    Get PDF
    Breeding timed to match optimal resource abundance is vital for the successful reproduction of species, and breeding is therefore sensitive to environmental cues. As the timing of breeding shifts with a changing climate, this may not only affect the onset of breeding but also its termination, and thus the length of the breeding period. We use an extensive dataset of over 820K nesting records of 73 bird species across the boreal region in Finland to probe for changes in the beginning, end, and duration of the breeding period over four decades (1975 to 2017). We uncover a general advance of breeding with a strong phylogenetic signal but no systematic variation over space. Additionally, 31% of species contracted their breeding period in at least one bioclimatic zone, as the end of the breeding period advanced more than the beginning. We did not detect a statistical difference in phenological responses of species with combinations of different migratory strategy or number of broods. Nonetheless, we find systematic differences in species responses, as the contraction in the breeding period was found almost exclusively in resident and short-distance migrating species, which generally breed early in the season. Overall, changes in the timing and duration of reproduction may potentially lead to more broods co-occurring in the early breeding season-a critical time for species' reproductive success. Our findings highlight the importance of quantifying phenological change across species and over the entire season to reveal shifts in the community-level distribution of bird reproduction.Peer reviewe

    Diverging trends and drivers of Arctic flower production in Greenland over space and time

    Get PDF
    The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    High Risks of Losing Genetic Diversity in an Endemic Mauritian Gecko: Implications for Conservation

    Get PDF
    Genetic structure can be a consequence of recent population fragmentation and isolation, or a remnant of historical localised adaptation. This poses a challenge for conservationists since misinterpreting patterns of genetic structure may lead to inappropriate management. Of 17 species of reptile originally found in Mauritius, only five survive on the main island. One of these, Phelsuma guimbeaui (lowland forest day gecko), is now restricted to 30 small isolated subpopulations following severe forest fragmentation and isolation due to human colonisation. We used 20 microsatellites in ten subpopulations and two mitochondrial DNA (mtDNA) markers in 13 subpopulations to: (i) assess genetic diversity, population structure and genetic differentiation of subpopulations; (ii) estimate effective population sizes and migration rates of subpopulations; and (iii) examine the phylogenetic relationships of haplotypes found in different subpopulations. Microsatellite data revealed significant population structure with high levels of genetic diversity and isolation by distance, substantial genetic differentiation and no migration between most subpopulations. MtDNA, however, showed no evidence of population structure, indicating that there was once a genetically panmictic population. Effective population sizes of ten subpopulations, based on microsatellite markers, were small, ranging from 44 to 167. Simulations suggested that the chance of survival and allelic diversity of some subpopulations will decrease dramatically over the next 50 years if no migration occurs. Our DNA-based evidence reveals an urgent need for a management plan for the conservation of P. guimbeaui. We identified 18 threatened and 12 viable subpopulations and discuss a range of management options that include translocation of threatened subpopulations to retain maximum allelic diversity, and habitat restoration and assisted migration to decrease genetic erosion and inbreeding for the viable subpopulations

    Percutaneous revascularization for ischemic left ventricular dysfunction: Cost-effectiveness analysis of the REVIVED-BCIS2 trial

    Get PDF
    BACKGROUND: Percutaneous coronary intervention (PCI) is frequently undertaken in patients with ischemic left ventricular systolic dysfunction. The REVIVED (Revascularization for Ischemic Ventricular Dysfunction)-BCIS2 (British Cardiovascular Society-2) trial concluded that PCI did not reduce the incidence of all-cause death or heart failure hospitalization; however, patients assigned to PCI reported better initial health-related quality of life than those assigned to optimal medical therapy (OMT) alone. The aim of this study was to assess the cost-effectiveness of PCI+OMT compared with OMT alone. METHODS: REVIVED-BCIS2 was a prospective, multicenter UK trial, which randomized patients with severe ischemic left ventricular systolic dysfunction to either PCI+OMT or OMT alone. Health care resource use (including planned and unplanned revascularizations, medication, device implantation, and heart failure hospitalizations) and health outcomes data (EuroQol 5-dimension 5-level questionnaire) on each patient were collected at baseline and up to 8 years post-randomization. Resource use was costed using publicly available national unit costs. Within the trial, mean total costs and quality-adjusted life-years (QALYs) were estimated from the perspective of the UK health system. Cost-effectiveness was evaluated using estimated mean costs and QALYs in both groups. Regression analysis was used to adjust for clinically relevant predictors. RESULTS: Between 2013 and 2020, 700 patients were recruited (mean age: PCI+OMT=70 years, OMT=68 years; male (%): PCI+OMT=87, OMT=88); median follow-up was 3.4 years. Over all follow-ups, patients undergoing PCI yielded similar health benefits at higher costs compared with OMT alone (PCI+OMT: 4.14 QALYs, £22 352; OMT alone: 4.16 QALYs, £15 569; difference: −0.015, £6782). For both groups, most health resource consumption occurred in the first 2 years post-randomization. Probabilistic results showed that the probability of PCI being cost-effective was 0. CONCLUSIONS: A minimal difference in total QALYs was identified between arms, and PCI+OMT was not cost-effective compared with OMT, given its additional cost. A strategy of routine PCI to treat ischemic left ventricular systolic dysfunction does not seem to be a justifiable use of health care resources in the United Kingdom

    Arrhythmia and death following percutaneous revascularization in ischemic left ventricular dysfunction: Prespecified analyses from the REVIVED-BCIS2 trial

    Get PDF
    BACKGROUND: Ventricular arrhythmia is an important cause of mortality in patients with ischemic left ventricular dysfunction. Revascularization with coronary artery bypass graft or percutaneous coronary intervention is often recommended for these patients before implantation of a cardiac defibrillator because it is assumed that this may reduce the incidence of fatal and potentially fatal ventricular arrhythmias, although this premise has not been evaluated in a randomized trial to date. METHODS: Patients with severe left ventricular dysfunction, extensive coronary disease, and viable myocardium were randomly assigned to receive either percutaneous coronary intervention (PCI) plus optimal medical and device therapy (OMT) or OMT alone. The composite primary outcome was all-cause death or aborted sudden death (defined as an appropriate implantable cardioverter defibrillator therapy or a resuscitated cardiac arrest) at a minimum of 24 months, analyzed as time to first event on an intention-to-treat basis. Secondary outcomes included cardiovascular death or aborted sudden death, appropriate implantable cardioverter defibrillator (ICD) therapy or sustained ventricular arrhythmia, and number of appropriate ICD therapies. RESULTS: Between August 28, 2013, and March 19, 2020, 700 patients were enrolled across 40 centers in the United Kingdom. A total of 347 patients were assigned to the PCI+OMT group and 353 to the OMT alone group. The mean age of participants was 69 years; 88% were male; 56% had hypertension; 41% had diabetes; and 53% had a clinical history of myocardial infarction. The median left ventricular ejection fraction was 28%; 53.1% had an implantable defibrillator inserted before randomization or during follow-up. All-cause death or aborted sudden death occurred in 144 patients (41.6%) in the PCI group and 142 patients (40.2%) in the OMT group (hazard ratio, 1.03 [95% CI, 0.82–1.30]; P =0.80). There was no between-group difference in the occurrence of any of the secondary outcomes. CONCLUSIONS: PCI was not associated with a reduction in all-cause mortality or aborted sudden death. In patients with ischemic cardiomyopathy, PCI is not beneficial solely for the purpose of reducing potentially fatal ventricular arrhythmias. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01920048
    corecore