13 research outputs found

    Using molecular simulation to predict solute solvation and partition coefficients in solvents of different polarity

    Get PDF
    A methodology is proposed for the prediction of the Gibbs energy of solvation (Delta(Solv)G) based on MD simulations. The methodology is then used to predict DSolvG of four solutes (namely propane, benzene, ethanol and acetone) in several solvents of different polarities (including n-hexane, n-hexadecane, ethylbenzene, 1-octanol, acetone and water) while testing the validity of the TraPPE force field parameters. Excellent agreement with experimental data is obtained, with average deviations of 0.2, 1.1, 0.8 and 1.2 kJ mol(-1), for the four solutes respectively. Subsequently, partition coefficients (log P) for forty different solute/solvent systems are predicted. The a priori knowledge of partition coefficient values is of high importance in chemical and pharmaceutical separation process design or as a measure of the increasingly important environmental fate. Here again, the agreement between experimental data and simulation predictions is excellent, with an absolute average deviation of 0.28 log P units. However, this deviation can be decreased down to 0.14 log P units, just by optimizing partial atomic charges of acetone in the water phase. Consequently, molecular simulation is proven to be a tool with strong physical basis able to predict log P with competitive accuracy when compared to the popular statistical methods with weak physical basis

    Calculation of drug-like molecules solubility using predictive activity coefficient models

    No full text
    The A-UNIFAC, UNIFAC, and NRTL-SAC models are used to predict solubility in pure solvents of a set of drug-like molecules. To apply A-UNIFAC, a new set of residual interaction parameters between the . ACOH group and six other groups had to be estimated. The solute model parameters of NRTL-SAC were also estimated for this set of molecules. NRTL-SAC showed better performance at 298.15. K, with an average absolute deviation of 37.6%. Solubility dependence with temperature was also studied: all models presented average deviations around 40%. In general, there is an improvement given by the A-UNIFAC over the UNIFAC in aqueous systems, proving the importance of taking association into account.The reference solvent approach was also applied improving the results. Solubility in pure solvents can now be predicted with an average deviation around 35.2%. This approach reduces differences previously found between the three models, being a powerful methodology.Fil: Mota, Fátima L.. Universidad de Porto. Laboratory of Separation and Engineering; PortugalFil: Queimada, António J.. Universidad de Porto. Laboratory of Separation and Engineering; PortugalFil: Andreatta, Alfonsina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pinho, Simão P.. Instituto Politécnico de Bragança; PortugalFil: Macedo, Eugénia A.. Universidad de Porto. Laboratory of Separation and Engineering; Portuga

    Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state

    No full text
    Abstract With the final purpose of describing the important aqueous + hydrocarbon liquid-liquid interfaces, the gradient theory was combined with the Cubic-Plus-Association equation of state (CPA EOS), taking advantage of the correct representation of interfacial tensions provided by the gradient theory and the correct phase equilibrium of water + hydrocarbon systems already obtained from CPA. In this work, preliminary studies involving the vapor-liquid interfacial tensions of some selected associating and non-associating pure components (water, ethanol, n-butane, n-pentane, n-hexane, n-heptane) are presented and discussed. The good description of equilibrium properties such as vapor pressure and liquid and vapor phase densities is shown in the full range of the vapor-liquid saturation line. For non-associating components, results are compared with those from the Soave-Redlich-Kwong and Peng-Robinson equations of state. A correlation for the influence parameter is presented from which surface tensions can be obtained in a broad temperature range with average errors smaller than 1%

    Solubilities of hydrofluorocarbons in ionic liquids: experimental and modelling study

    No full text
    In this work, experimental data on the gas solubility of hydrofluorocarbons (CHF3, CH2F2 and CH3F) in four room-temperature ionic liquids (RTILs) were determined within the temperature range 288 K to 308 K and at atmospheric pressure. The RTILs used were 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide([C2mim][NTf2]), (trihexyl)tetradecyl-phosphoniumbis(trifluoro-methylsulfonyl)imide ([P6,6,6,14][NTf2]), and N-methyl-2-hydroxyethylammoniumpropionate ([m-2-HEA][Pr]) and pentanoate ([m-2-HEA][P]). Two modelling approaches, which we denote as predictive and correlative, were compared. In the former, the cubic plus association equation of state (CPA EoS) is used as a predictive model to estimate the solubilities using only pure components physical properties. In the latter, the regular-solution theory is the basis to build an empirical model whose parameters are obtained through least-squares fitting of experimental values
    corecore