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Abstract

A methodology is proposed for the prediction of the Gibbs energy of solvation (A, G ) based

on MD simulations. The methodology is then used to predict Ay, G of four solutes (namely

propane, benzene, ethanol and acetone) in several solvents of different polarities, including n-
hexane, n-hexadecane, ethylbenzene, 1-octanol, acetone and water, while testing the validity of
the TraPPE force field parameters. Excellent agreement with experimental data is obtained, with
average deviations of 0.2, 1.1, 0.75 and 1.2 kJ/mol, for the four solutes respectively.
Subsequently, partition coefficients for forty different solute/solvent systems are predicted. The
a priori knowledge of partition coefficient values is of high importance in chemical and
pharmaceutical separation process design or as a measure of the increasingly important
environmental fate. Here again, the agreement between experimental data and simulation
predictions was excellent. An absolute average deviation of 0.28 log P units was obtained.
However, this deviation can be decreased down to 0.14 log P units, just by optimizing partial
atomic charges of acetone in the water phase, which proves molecular simulation to be a
promising tool with strong physical basis to predict log P with competitive accuracy when

compared to the popular statistics based methods with weak physical basis.



1. Introduction

The Gibbs energy of solvation is a vital thermodynamic quantity used to describe and
fully understand the behavior of complex systems. Free energy calculations in molecular
systems appeared as a predictive tool to express how species may associate or react'. Over the
last decade, significant progress has been made regarding the prediction of the Gibbs energy of
hydration of small molecules™, amino acid side-chains*® or even drug-like compounds’®, as
well as the prediction of ligand-protein binding affinities’, the prediction of Gibbs energies for
the characterization of reaction pathways and chemical equilibrium'® or to larger databases
using continuum solvent approaches'.

The overwhelming majority of experimental and theoretical studies concerning Gibbs
energies of solvation deals with aqueous systems — i.e., by reporting the Gibbs energy of
hydration'>. However, many important biological processes involve the interaction of solutes
with both hydrophobic and hydrophilic environments (e.g., cell-membrane transfer, protein-
ligand binding, etc.). In this context, it becomes increasingly important to understand how

compounds partition between different fluid phases™ '

. Partition coefficients (henceforth
referred to as log P) reflect the solute hydrophobicity, partitioning in different solvents and
pharmacokinetic characteristics. They are widely used for several applications in the
pharmaceutical (e.g. drug design) or chemical industries (e.g. separation technology), and as a
measure of the increasingly important environmental fate”. The prediction of partition
coefficients is done mainly based on Quantitative Structure—Property Relationship (QSPR)
algorithms'®. QSPR methods are, to a large extent, statistically-based techniques. They are
considerably fast and applicable to large databases of molecular structures but they also require
the input of large multi-parameter tables. More importantly, they often lose predictive ability for
compounds that are significantly different from their training set, and have thus been the object
of criticism'’. Alternative approaches may involve linear response theory based simulations'® or
continuum free energy perturbation based simulations'” %,

A different approach to the previously mentioned tools is to use the absolute Gibbs

energies of solvation calculated in the different phases to estimate the partition coefficient. From

the Gibbs energies of solvation (A, G ) in two different phases (here generically named a and

b) at constant temperature (7) and pressure (p), one can readily calculate the corresponding

partition coefficient, log P**, according to the following expression:

A,G -A,, G
log Pa/b — “solv solv (1)
2.303RT




In principle, both free energies of solvation that appear in equation (1) can be computed
directly using molecular simulation methods. Initially, this approach was used to predict the
water/CCl, partition coefficients of small alcohols™ and it has previously been applied only to a
few specific cases, e.g., 1-octanol/water partition of n-alkanes'®, 1-ethylpropylamine®* and 3-
methyl-1-pentanol*, chloroform/water” and n-octane/water*® partition coefficients.

Equation (1) requires knowledge of the Gibbs energy of solvation of the solute in both
solvents of interest (normally water and an organic solvent). As mentioned previously, there are

very few studies that calculate solvation energies by molecular simulation in solvents other than

water. Gongalves and Stassen”’ computed A, G in low-dielectric constant solvents, including

Solv
carbon tetrachloride, chloroform and benzene, using the GROMOS force field. Average
absolute deviations (AAD) to experiments of 2.1 kJ/mol and 3.3 kJ/mol were reported for the
first two solvents (23 solutes) and for benzene (17 solutes), respectively. Oostenbrink et al.”®
proposed a new parameterization of GROMOS based on simulations of the Gibbs energy of
solvation in both water and cyclohexane. The authors concluded that it was not possible to
adequately reproduce both data sets using a single set of parameters, and proposed the use of
two different sets of point charges for polar and non-polar solvents. Chang et al.* also carried
out calculations of solvation energies of 15 neutral amino acids and side-chain analogues in
cyclohexane, but used the OPLS-AA model to represent the solutes and the solvent. Deviations
of 2.3 kJ/mol were reported. Other studies reported Gibbs energies of solvation in 1-octanol,
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either pure'* or saturated with water’"”

. We are only aware of one previous study where the
authors calculated solvation Gibbs energies in a range of solvents of different polarity. Geerke
and van Gunsteren’> computed solvation energies of several solutes (most of them were amino-
acid side chains) in methanol (14 solutes), dimethyl sulfoxide (12 solutes), acetonitrile (7
solutes) and acetone (11 solutes), using version 53A6 of the GROMOS force field*® and
relatively short simulation runs. They reported AAD ranging from 3.3 to 7.5 kJ/mol, depending
on the solvent. Solvation in acetone was found to be particularly problematic and deviations to
experiments were explained in terms of the properties of the two solvent models tested.

Although most experimental studies deal with aqueous systems, a large database of

experimental measurements of A G in several non-aqueous solvents appeared recently in the
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literature®. Taking advantage of the availability of these data for comparison purposes, we
report here the Gibbs energy of solvation of different compounds in diverse environments,
calculated using molecular dynamics simulations (MD) with the TraPPE** force field. In order
to cover a wide spectrum of polarity, we have decided to study the solvation of four chemically
different solutes: propane (non-polar solute), benzene (aromatic solute), ethanol (protic polar
solute) and acetone (aprotic dipolar solute), in different media: n-hexane or n-hexadecane (non-

polar solvents), acetone (aprotic dipolar solvent), ethylbenzene (quadrupolar and aromatic



solvent), 1-octanol and water (hydrogen bonding solvents). We will then use these results to
estimate the partition coefficients in different solvent combinations, comparing them to
available experimental data. This will contribute to validate our methodology for general use in
chemical and pharmaceutical applications. Apart from the practical interest of such calculations,
our results are also useful for force field development purposes. Typically, force fields are
developed based on pure component data, hence leaving out the behavior of molecules in
heterogeneous/multicomponent environments. In this paper, we will test for the first time the
Gibbs energy predictive capability of the TraPPE force field in a wide range of environments,
identifying success and failure cases, and pointing out particular classes of compounds that
could benefit from a refinement of the force field parameters. Contrary to the most recent
versions of the GROMOS force field®, no solvation data was included during the
parameterization of TraPPE™. Moreover, the accuracy of the force field for the prediction of
Gibbs energies has not yet been thoroughly evaluated, and the calculations presented here

represent an important step in this direction.

The remainder of this paper is organized as follows: in Section 2 we describe the
computational methods used, provide MD simulation details, and briefly present the force field
parameters used in this work. In Section 3.a, we evaluate the performance of the TraPPE force
field for pure component physical properties, while the capability of the force field to predict
absolute solvation energies and partition coefficients is discussed in sections 3.b and 3.c,

respectively. The main conclusions are summarized in Section 4.

2. Computational Methods
a. Thermodynamic Integration
The solvation process consists of the transfer of a solute molecule from a well-defined
gas (or vacuum) state into solution. The Gibbs energy of solvation can be experimentally
measured from equilibrium concentration measurements in different phases (see reference > for
further details). In statistical mechanics terms, it can be expressed as the total reversible work

associated with changing the Hamiltonian of the system from the gas to the liquid state.

Computationally, A, G, being a state function, can be calculated from a thermodynamic cycle

Solv
in which solute-solvent interactions are progressively turned off*’. The Gibbs energy associated
with this mutation is estimated here using MD simulations and the Thermodynamic Integration

(TT) method.

The TI algorithm, free of hysteresis, has been described in detail in previous

37-39

publications™ ™. In short, if we consider any two well-defined states, the classical Hamiltonian



of the system (the sum of kinetic and potential energies of the system) can be made a function
of a coupling parameter, A, and used to describe the transition between those two states; in this
case, an initial fully interacting system and a final “dummy” state where all solute-solvent
interactions have been turned off. The derivative of the Hamiltonian with respect to the coupling
parameter is derived analytically, and equilibrium averages are used to evaluate these
derivatives at several discrete and independent A values. One then integrates these derivatives
along a continuous path connecting the initial and final states to obtain the free energy between

them.

340 we have first turned off the

In our protocol, in order to avoid charge-fusion effects
electrostatic interactions and then the Lennard-Jones (LJ) interactions. During the decoupling
process, the electrostatic interactions, that are a function of A, were linearly interpolated
between neighboring states while the LJ interactions were interpolated via soft-core
interactions’', with parameters given in our previous publication’. The electrostatic term
represents the free energy cost of charging/discharging the solute, while the LJ component is the

sum of an unfavorable cavity formation term and a favorable dispersion contribution. The total

solvation Gibbs energy can then be estimated from:

| Lot O™ Lasr(W)\"
ASolvG = ASolvGEleL + ASolvGLJ == J’<#> d>\’ + J’<%)> d7\‘ (2)
0

s 0 s

In this work, a MD simulation was performed for each discrete A value, ranging from A =
0 (fully interacting solute) to A = 1 (non-interacting solute). We have used 5 A values for the
electrostatic decoupling and 15 A points to evaluate the LJ contribution. As demonstrated in a
previous work, this choice of intermediate states ensures sufficient accuracy in the free energy
calculations*. The integration of the LJ Hamiltonian derivatives was carried out by fitting the
data to a physically-based approximation to the cavity formation and dispersion interaction

terms, and then integrating the curve analytically*. The fitting function is:

o9 (\
o7 () =on2+A]x—2#+i 3)
o ), A —AN+ A, A,

where A4; are fitting parameters. In all cases, we have employed non-linear weighted least square
fittings of the simulation data. For the integration of the electrostatic component, Simpson’s rule

was used.



b. Molecular Dynamics Simulations

MD simulations were conducted both for the calculation of pure solvent physical
properties (Section 3.a) and for computing Gibbs energies of solvation (Section 3.b). All
simulations were carried out using the GROMACS 4.0.7 suite”, using the leap-frog Verlet
integration algorithm** with a time step of 2 fs to integrate Newton’s equations of motion. A
new feature in this version of GROMACS® allows for the intermolecular solute-solvent
interactions to be turned off independently from the intramolecular interactions. This means that
the solvation energy can be quantified by running only a liquid phase simulation, avoiding the
need for a vacuum step, as discussed in our previous publication®.

Simulations were performed using periodic boundary conditions in all directions. In order
to improve efficiency (see reference’ for details), the reaction-field method™, which
approximates the medium beyond a cut-off distance of 1 nm by a dielectric continuum of
uniform permittivity, was used to handle long-range electrostatics. The dielectric constant was
adjusted to the permittivity of each solvent. The remaining cut-off radii were 1 nm for the short-
range neighbor list and 0.8-0.9 nm switched cut-off for the LJ interactions. We have also
applied long range dispersion corrections for energy and pressure’.

For the estimation of the pure component properties we have employed the Nosé-Hoover
thermostat*”*® for temperature coupling using a time constant of 1 ps, and the Parrinello-
Rahman barostat” with a time constant of 2 ps to enforce pressure coupling. The reference
pressure was set to 1 bar and the compressibility was set according to the fluid under evaluation
(data from Cibulka and Takagi’’). Each simulation box contained 512 molecules. Liquid
simulations were conducted for 10 ns of production time, while vacuum simulations (necessary
for calculating the enthalpies of vaporization) were conducted without cutoffs or periodic
boundary conditions for 50 ns.

In the case of Gibbs energy calculations, solvated systems consisted of one solute
molecule and 265 molecules in the case of 1-octanol, 286 for n-hexane, 296 for acetone, 181 for
ethylbenzene, 214 for n-hexadecane, and 512 for water. The TraPPE**”"™’ force field was used
to represent all the molecules except water, which was represented by the Modified Extended
Simple Point Charge (MSPC/E)*® model. This model was developed as an improvement over
the popular SPC/E”” water potential and is an accurate force field for pure water and aqueous
phase equilibria thermodynamic properties. It also includes a polarization correction expected to
improve solvation energy predictions. A few comparisons of the Gibbs energy results predicted
with the MSPC/E against other water models were reported previously™®. All calculations
were performed at 298 K and 1 bar. Langevin stochastic dynamics™ was used to control the

temperature, with a frictional constant of 1 ps” while for constant pressure runs the Berendsen

barostat™, with a time constant of 0.5 ps and an isothermal compressibility of 4.5x 107 bar™,
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was used to enforce pressure coupling. For each simulation, we first run an energy minimization
(using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm® for 5000 steps
followed by a steepest descent minimization for another 500 steps) and afterwards a quick
constant volume equilibration (100 ps), a constant pressure equilibration (1 ns), enough to

obtain complete equilibration of the box volume, and finally a 5 ns NpT production stage. All

simulations were performed in a threefold replica in order to obtain statistically meaningful

results.

¢. The TraPPE Force-Field
The first development of Transferrable Potentials for Phase Equilibria (TraPPE) force
field appeared in the late 1990’s with the purpose of creating an accurate, yet simple and
transferable model to reproduce several phase equilibrium properties. In the general framework
of the TraPPE force field, non-bonded interactions are described by pairwise-additive LJ 12-6
potentials and Coulombic interactions of partial charges. In the present work we have used a

32 and an all-atom (AA) description for the

united-atom (UA) description of alkyl CH, groups
polar groups: OH group in 1-octanol’' and the CO group in acetone™. For aromatic groups, we
have tested both a UA model’” and an AA or explicit-hydrogen (EH) approach®. For the EH
model of benzene, additionally to the original TraPPE parameters we have also tested a recent
reparameterization of its partial atomic charges, designed to yield better agreement with
experimental Gibbs energies of hydration”. Lorentz-Berthelot combining rules were used to
determine the parameters for unlike LJ interactions. All bond lengths were treated as rigid and,

with the exception of the fully rigid aromatic rings, all molecular models included harmonic

angle bending and an appropriate torsional potential.

3. Results and Discussion
a. Pure Component Physical Properties
The accuracy of the TraPPE force field for the prediction of pure fluid properties of all
compounds was initially evaluated. The calculated densities and heats of vaporization from NpT
MD at 298 K are shown in Table 1. Densities were directly obtained from the GROMACS suite
using the g _energy tool, while heats of vaporization were estimated by taking the difference of

enthalpy in the vapor and liquid phases:

A H=FE —E +RT 4)
vap g
where, E, and E, are the total energy in the gas phase and in the liquid phase, respectively.

Based on the data reported in Table 1, one can conclude that the TraPPE force field

provides excellent accuracy for liquid densities but generally underestimates the enthalpy of



vaporization, especially in the case of the n-alkanes. However, it should be noted that enthalpy
data was not included in the model parameterization for such non-polar species. In the case of
ethylbenzene, the enthalpy of vaporization can be considerably improved if an explicit hydrogen
description of the aromatic ring is considered. Our results for the density and heat of
vaporization of alcohols and for the density of acetone are in very good agreement with
previously published data using Configurational Bias Monte Carlo simulations and the TraPPE

force field.”">*

This agreement provides an appropriate validation of our simulation protocol.
b. Gibbs Energies of Solvation

Initially, the Gibbs energies of solvation of propane in n-hexadecane, ethylbenzene, 1-
octanol, acetone and water were examined. Since propane has no partial atomic charges® the
Coulombic contribution to the total solvation energy is zero. Consequently, the Gibbs energy of
solvation becomes equal to the LJ contribution (see equation 2). A typical plot of the
Hamiltonian derivative as a function of time during the production stage of MD simulations for
the case of benzene in n-hexane for different A values is shown in Figure 1. As we can observe,

for all values of the coupling parameter, < 0JH/0\ > converges to its equilibrium value after a

short period of time. Then, one can take the average value of the Hamiltonian derivative and
plot it as a function of the coupling parameter, as represented in Figure 2, for the case of
propane in different solvents (complementary plots are given as supporting information for the
remaining solutes in Figures S1 to S3). Integration of this curve according to equation (2) yields
the Gibbs energy of solvation.

The shape of the curves in Figure 2 reflects the opposite contributions of the cavity
formation energy (at higher A values) and the solute-solvent dispersion interactions (at lower A
values). It is also quite interesting to see that the water curve is considerably different from the
other solvents of lower polarity, which will be reflected in the substantially different values
predicted for the Gibbs energy of solvation. The unfavorable cavity contribution is much larger
than in the other solvents, due to the difficulty in breaking the water hydrogen-bonded network
to make room for the solute, while the favorable dispersion contribution is smaller in water than
in the non-aqueous solvents®. This observation is also verified for the other solutes (Figures S1-
S3).

Results for the predicted solvation energies using equation (2) together with experimental
values are presented in Table 2. As it can be seen, an excellent agreement (AAD equal to 0.23
kJ/mol) between simulations and experiments is obtained. It is interesting, although not
necessarily unexpected, that the best results are obtained in the solvent that is most chemically
similar to propane (i.e., n-hexadecane). The model performs well for all other solvents, even for
water, where the solvation of propane is highly unfavorable. This indicates that the TraPPE LJ

parameters are able to adequately describe the Gibbs energy of solvation in a wide range of
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environments. Since propane has no partial charges and consequently the electrostatic term is
zero, we have also performed a simulation in which ethylbenzene is represented by the UA
TraPPE force field”, without partial atomic charges, where consequently the electrostatic term
becomes zero. As we can see from Table 2, the prediction is also quite satisfactory and at a
much lower computational cost. This suggests that UA models can be adequate representations
of aromatic molecules in systems that are dominated by repulsion and dispersion interactions.
The next solute examined, following a scale of increasing polarity, was benzene. We have
concluded in a previous publication® that in order to predict correct Gibbs energies of
hydration, an EH description of benzene is required, and partial atomic charges need to be
assigned to the different aromatic atoms. This is because for aromatic molecules the electrostatic
component cannot be neglected in the calculation of the Gibbs energy of hydration. For the
description of benzene carbon and hydrogen atoms, we have decided to keep the original LJ

TraPPE parameters and tested 2 different charge sets: 1) the original TraPPE parameters

(qc =—q, =—0.095); 2) a modified set of charges designed to accurately reproduce the

benzene Gibbs energy of hydration®’ (qc =—q, = —0.1225).

Results for the averaged LJ term, the different electrostatic contributions and the
respective total solvation energies for the two studied charge sets are presented in Table 3. In
general, for both models tested the electrostatic component of the free energy increases in
magnitude, becoming more negative as the polarity of the solvent increases. Nevertheless, the
Gibbs energy of solvation of benzene in the non-aqueous solvents is still dominated by the LJ
term, which means that the influence of the solute atomic partial charges on the Gibbs energy is
relatively small. This helps explain why we are able to obtain a very good prediction for the
Gibbs energy in ethylbenzene using a computationally much cheaper UA model for the solvent.
In fact, the UA prediction is even closer to the experimental value than the EH approach. This
may seem somewhat surprising, but it can be explained by the fact that the original TraPPE
parameterization of the EH model focused only on benzene and heterocyclic aromatic
compounds, and was not optimized for pure-component substituted alkylbenzenes. In our recent
extension of the TraPPE-EH model to alkyl-aromatic molecules®, we have simply adopted the
LJ parameters from the UA model of alkanes®* for the alkyl substituent groups, and focused only
on optimizing the point charges to accurately describe the Gibbs energy of hydration. It is
possible that a reparameterization of the LJ parameters for alkyl-aromatic molecules, following
the TraPPE protocol, will yield improved results for the Gibbs energy of solvation in these
solvents.

The electrostatic component of the Gibbs energy of solvation of benzene in water is much
larger than for the other solvents — it is at least of the same magnitude as the LJ component.

This means that an adequate parameterization of the solute point charges becomes extremely
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important in aqueous media. From Table 3, one can see that the original TraPPE charges give
good predictions for all the non-aqueous solvents, but fail for water. These charges were
parameterized in a non-polar environment (pure benzene), and thus should be expected to
perform well in similar environments. It is therefore not surprising that the best results are
obtained for benzene solvation in ethylbenzene. Conversely, the modified TraPPE charges,
optimized for accurate Gibbs energies of hydration of alkyl-aromatics, clearly improve the
prediction for the water phase, but at the cost of a slightly poorer prediction in the remaining
media (except of course in the cases where the electrostatic contribution is zero). It was shown
previously®® that it was necessary to rescale the point charges of alkyl-aromatic solutes when
transferring them from a non-polar to a highly polar (i.e. water) solvent, so as to account for the
different polarization environments surrounding the molecule. It is thus to be expected that the
consequent improvement in the description of hydration causes a worse behavior in less polar
solvents.

Generally, solvation Gibbs energies are in very good agreement with experimental values
and an AAD of 1.1 kJ/mol was obtained with the previously optimized parameters for
benzene®. A slightly larger deviation is observed when using the original charge values (AAD
of 1.6 kJ/mol), but this is caused mostly by the poor performance of the benzene model in
water, as explained above. These results strongly suggest that the assignment of point charges,
even for weakly polar molecules, should depend on the environment in which they are placed. A
similar conclusion was reached by Oostenbrink et al.*®, leading to the proposal of two different
GROMOS charge sets, one for polar and one for non-polar solvents.

We have also studied the solvation of a highly polar solute, ethanol, in the different
solvents. Results for both the LJ and electrostatic contributions of ethanol solvation are given in
Table 4. Contrary to the two above mentioned solutes, in highly polar solutes, Coulombic
interactions play a very important role”. Indeed, for all solvents except n-hexane, the
electrostatic component is higher in magnitude than the LJ component. Our results for the
solvation of ethanol in ethylbenzene confirm this analysis — in order to correctly capture the
electrostatic contribution, an explicit hydrogen solvent description must be considered. Thus,
for ethylbenzene-EH we have used the parameters given in Garrido et. al*, which give very
good results for the Gibbs energy of solvation of ethanol.

As in the previous cases, the best prediction is obtained for the solvent that is most
chemically similar to the solute — 1-octanol — but the results are also quite good for ethanol in
water. Because the TraPPE force field was parameterized in pure ethanol’', it is able to capture
correctly the hydrogen bond interactions that are dominant in those systems. For ethanol in
acetone, the results are not as good, even though this solvent is of intermediate polarity between
l-octanol and water. This may arise from an inability of the acetone parameters in describing

hydrogen bond interactions, as discussed in more detail below. The failure of the model in the
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case of ethanol in n-hexane was quite unexpected, as this is a completely non-polar solvent
where only the LJ component is important. One possible explanation would be an inadequacy of
the Lorentz-Berthelot combining rules to describe the cross-interactions between alcohols and
alkanes, but this is unlikely, on its own, to justify such a large discrepancy. A more plausible
justification is an inaccurate experimental value. This possibility will be discussed in more
detail in section 3c. Even with the large error for the n-hexane solvent, a promising 1.5 kJ/mol
overall average deviation was observed for the full data set.

Finally, we have studied a dipolar solute, acetone, in different media. Table 5 reports the
results obtained, showing very good predictions for the different solvents, except water. The
good results obtained for acetone solvation in n-hexane, where only LJ interactions are present,
suggest a correct parameterization of the LJ term for acetone. In a previous solvation study’>,
acetone was identified as a problematic solvent, with relatively large errors (AAD of more than
5 kJ/mol) obtained for the Gibbs energies of solvation of apolar solutes in acetone using both
the OPLS® and the Weerasinghe and Smith® models. Geerke and van Gunsteren’ suggested
that this could be solved by the use of more attractive van der Waals interactions to reproduce
acetone bulk properties in simulations. In the present work, the acetone LJ parameters can be
assessed by directly comparing simulated and experimental Gibbs energies of solvation for the
cases of propane in acetone (Table 2) and acetone in n-hexane (Table 5), where only LJ
interactions between solute and solvent are present. In both cases, good agreement is obtained,
which may indicate that TraPPE parameters give a better description of such LJ interactions.

Results for the water phase using the original TraPPE parameters are considerably off the
experimental values. Given that the TraPPE LJ parameters for acetone seem to be sufficiently
accurate (they correctly describe pure acetone properties (ref.’* and Table 1) as well as Gibbs
energies of solvation in non-polar environments), it is likely that the discrepancy is caused by an
incorrect parameterization of the point charges. Following the same rationale as in our previous
work™®, we have attempted to modify the atomic partial charges assigned to the carbonyl carbon

and oxygen atoms in acetone to reproduce the Gibbs energy of hydration. An optimal

parameterization was found when ¢q.=-—q,=-0.545, which exactly fits the experimental

solvation Gibbs energy. This represents a relatively small increment in magnitude over the

original TraPPE force field partial charges of q.=—q,=-0.424. This change in the point

charges reflects the change of polarization environment when moving from pure acetone to
water, analogously to what was shown in our previous study on alkyl-aromatic solutes®.
However, there is a further aspect that is worth considering in the case of acetone. Apart
from water, the worst results for the solvation of acetone are obtained in 1-octanol. Similarly,
ethanol solvation in acetone is also poorly predicted by the TraPPE model (Table 4). This points

to a deficiency in the description of interactions between acetone (or perhaps ketones in general)
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and molecules that are hydrogen-bond donors, such as water or alcohols. Indeed, hydrogen
bonds are not formed in pure acetone, and thus a correct description of these interactions is not
required to model pure-component properties or interactions with other molecules that are not
hydrogen donors (e.g., alkanes or aromatics). However, when acetone is in contact with water or
alcohols, association becomes important and the force field fails (dramatically in the case of
water). In contrast, when molecules that form hydrogen bonds in the pure fluid are mixed (e.g.,
different alcohols or water and alcohols), the force field performs well, because association is
already accounted for in the pure-component parameterization. Similar effects are observed
when mixtures of protic and aprotic molecules are described by molecular based models, such
as excess Gibbs energy models and equations of state, that do not explicitly account for
association.

Finally, an overall comparison of the predicted Gibbs energies of solvation against
experimental data is summarized in Figure 3. The data shown in this figure should be seen as
our “best predictions”, i.e. using the EH model for benzene and ethylbenzene, and the optimized
point charges for benzene and acetone hydration. As we can see, the agreement is excellent for
the entire range of solutes and solvents. These results suggest that good predictions of free
energies of solvation can be achieved using simple fixed-charge molecular models, provided
that the point charges are parameterized accounting for changes in the polarization environment
as the solute is moved from non-polar to polar solvents. This approach is fundamentally
different from others presented in literature where liquid polarization effects can be derived
from e.g. ab initio” or quantum mechanics/molecular mechanics calculations®’. Although our

results are encouraging, a more systematic examination of these effects is necessary.

c. Prediction of Partition Coefficients
The partition coefficients for propane, benzene, ethanol and acetone at 298 K can be
readily estimated from equation (1) using the Gibbs energies of solvation calculated from the
MD simulations. Results are shown for the different solutes in Table 6. Partition coefficients
can also be experimentally measured via the shake-flask technique for generating saturated
liquid phases followed by sampling and quantitative solute analysis (details are given in the
review of Valké ®®). However, the availability of such experimental data is scarce and limited to

the environmentally important 1-octanol/water® and n-hexane/water’*”'

partition coefficients.
Such values were included in Table 6 for comparison. Very good agreement is obtained for all
solutes except for acetone, but the latter are improved by applying the modified set of point
charges for aqueous media. It is also important to notice that although the simulation prediction
of the ethanol Gibbs energy of solvation in n-hexane is quite far from the experimental value
(see Table 4), the corresponding n-hexane/water partition coefficient is correctly predicted (see

Table 6). Furthermore, the TraPPE force field gives good predictions of ethanol Gibbs energy of
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solvation in water. Taken together, these results may indicate a possible error in the
experimental value for the Gibbs energy of solvation of ethanol in n-hexane. Further
experiments are needed to clarify this point.

One way to estimate the experimental partition coefficients when direct measurements are
not available is to use experimental solvation energies in both phases as inputs to equation (1).
We call these “estimated” experimental partition coefficients. A general overview of predicted
simulation data against “estimated” experimental values is given in Figure 4. Small deviations,
of 0.05, 0.16, 0.30 and 0.13 log P units were obtained for propane, benzene, ethanol and
acetone, respectively. Moreover, the important 1-octanol/water partition coefficient is predicted
very accurately for all the solutes.

In terms of accuracy comparison, and although applied to larger solute databases,
deviations of 0.46 and 0.43 log P units for l-octanol/water and n-hexane/water partition,
respectively, can be found in the literature using an empirical thermodynamic approach’.
Multiple regression techniques applied on descriptors based on molecular properties and
molecular partial charges can produce deviations of 0.65 log P units for 1-octanol/water
partition coefficient”. For the same property, a combination of a group contribution approach
together with several correction factors produces deviations of 0.4 log P units’*. Neural network
techniques applied to the prediction of log P from non-linear regression of structure analysis
using 10 to 18 descriptors produced deviations ranging from 0.3 to 0.4 log P units”. Finally, a
generic test of quantum mechanical and QSPR methodologies produced average deviations of
0.6 and a maximum of 2.15 log P units’®. This comparison suggests that molecular simulation
methods can be competitive in terms of accuracy to other techniques that are more commonly

employed to predict partition coefficients.

4. Conclusions

The focus of this work has been to predict partition coefficients of 4 solutes in several
combinations of 6 different solvents, through the calculation of the absolute Gibbs energies of
solvation using molecular dynamics simulations and thermodynamic integration. The TraPPE
force field was used to account for the intra- and intermolecular interactions. The diversity of
solutes and solvents considered in this work allowed us to assess the performance of the force
field for Gibbs energy predictions in a wide range of environments. By comparing simulated
and experimental data, we were thus able to identify several strong and weak points of the
TraPPE force field, and suggest possible avenues for future model refinement. The promising
results obtained for the solvation of propane (a non-polar solute) in all solvents and of different
solutes in n-hexane (a non-polar solvent) indicate that the Lennard-Jones parameters of TraPPE
are generally able to describe the dispersive and repulsive (cavity formation) contributions to

the Gibbs energy of solvation. This is an important conclusion, because a correct description of

14



the free energy of solvation relies on a delicate balance between enthalpic and entropic
contributions, and this is difficult to accurately capture using a simple molecular model. The
only relevant exception was the Gibbs energy of solvation of ethanol in n-hexane, where a large
deviation from the experimental value was observed. This may be due to a shortcoming of the
molecular model, but also to inaccuracies in the experimental measurements. The fact that both
the water/n-hexane partition coefficient and the Gibbs energy of solvation of ethanol in water
obtained from the simulations are in excellent agreement with experiment suggests that the
latter may be the most likely explanation. Further experimental measurements and simulations
are necessary to clarify this issue.

Our results for solvation in ethylbenzene reinforce an earlier conclusion® that an explicit
hydrogen description, together with an appropriate assignment of point charges, is necessary for
an adequate description of Gibbs energies of solvation involving aromatic solutes and/or
solvents. Nevertheless, in the particular cases of solvation of non-polar solutes in aromatic
solvents or of aromatic solutes in non-polar solutes, a united-atom description of the aromatic
molecules is usually sufficient to provide satisfactory free energy predictions, at a much lower
computational cost. This is because in these cases the electrostatic component is zero, and a
carefully parameterized united-atom model is capable of describing the LJ contribution to the
Gibbs energy of solvation.

In general, the most accurate results were obtained for the solute/solvent pairs with
chemically similar molecules (e.g., propane in n-hexadecane, benzene in ethylbenzene, ethanol
in 1-octanol, and even acetone in acetone). This is to be expected, considering that force fields
(and TraPPE is no exception) are normally parameterized based on pure-component data, and
thus perform better for systems that involve the same type of interactions as in the pure fluid.
Conversely, the worst performances were observed for systems that include interactions that
were not present in the pure-fluid parameterization. A particularly problematic case for model
development occurs for mixtures of protic and aprotic polar molecules — e.g., acetone in water
or 1-octanol, and ethanol in acetone. In pure acetone, intermolecular hydrogen bonds do not
play an important role, and thus the parameters are not necessarily designed to properly account
for these interactions. However, when acetone is mixed with protic molecules (water or
alcohols), hydrogen bonds are formed, and the model may be unable to correctly describe them.
In the present paper, we demonstrate that a simple rescaling of the point charges on acetone is
able to account for this discrepancy and accurately reproduce its free energy of hydration.
Further tests are necessary to assess the general applicability of this approach. Nevertheless, our
calculations confirm previous observations, by ourselves* and others®, that the point charges
assigned to a given molecule should reflect the environment in which it is placed. Clearly, a
more physically realistic approach to address this issue is the use of polarizable force fields as

discussed by others®"’"’®. However, they are significantly more computationally demanding and
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thus, less attractive for the application presented here. Our results suggest that good predictions
can be obtained using fixed-charge models, provided environment effects are taken into account
in the parameterization of the point charges.

Our simulations are able to predict Gibbs energies of solvation that are in very good
agreement with experimental data, deviating on average only 0.23 kJ/mol for propane, 1.10
kJ/mol for benzene, 0.29 kJ/mol in the case of acetone using solute partial charges rescaled to fit
the solvation in water (original force field parameters predict deviations of 1.2 kJ/mol to
experimental data), and 0.75 kJ/mol for ethanol. They should thus be considered as excellent
predictions. Using the different simulation values of solvation free energies, we are able to
readily estimate the corresponding partition coefficients. For the cases where independent
experimental values are available (for water/1-octanol and water/n-hexane partition), excellent
agreement was achieved. In total, 40 partition coefficients were predicted, deviating 0.14 log P
units from experimental values measured directly or estimated from experimental solvation
energy data using equation (1). It is important to notice that this value was obtained using
optimized partial atomic charges for acetone in the water phase, as mentioned in Sections 3b.
and 3c. The molecular simulation predictions reported here are, at least, comparable in accuracy
to commonly used QSPR-based tools or group contribution methods. Contrary to other
methodologies presented in the literature, we do not need the knowledge of the experimental
solvation data in advance, which is a distinct advantage. Furthermore, our methodology can be
generically extended to any two-solvent partitioning, which is a clear advantage when compared

to the common log P estimation methods.
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Table 1: Pure component densities and heats of vaporization at 1 bar and 298 K from experimental data and MD simulation.

p (kg/m’) AyvapH (KJ/mol)
Solvent Absolute Deviation Absolute Deviation
Experiment Simulation Experiment Simulation
(%) (%)
n-propane 491.3 485.9 1.1 14.8 11.7 20.9
n-hexane 656.2 657.8 0.2 31.6 26.5 16.1
n-hexadecane 769.0 779.0 1.3 79.7 72.0 9.7
ethanol 786.0 780.9 0.6 42.5 40.5 4.7
1-octanol 826.1 823.7 0.3 72.3 67.0 7.3
acetone 786.7 775.0 1.5 31.2 26.4 5.3
benzene™* 857.9 877.6 23 33.0 33.0 0.0
ethylbenzene 863.7 861.7" 857,5° 0.2% 0.7° 42.2 35.5"; 40.9° 16% 3.1°

data from ref* at 313 K

Pusing UA description of the aromatic ring

‘using EH description of the aromatic ring
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Table 2: Experimental and predicted values for the Gibbs energy of solvation of propane in different solvents. The subscripts give the statistical accuracy of

the last decimal point shown.

Solvent Ay G, (I/mol) Ay G = Ay G (kI/mol) Absolute deviation
(kJ/mol)

n-hexadecane -6.0 -6.03 0.0
ethylbenzene - UA -6.829 0.25
ethylbenzene - EH 7 719, 0.12
1-octanol -5.52 -5.124 0.40
acetone -6.7 -6.125 0.58
water 8.5 8.64 0.10
Overall 0.23
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Table 3: Experimental and predicted values for the Gibbs energy of solvation (in kJ/mol) of benzene in different solvents. The subscripts give the statistical

accuracy of the last decimal point shown.

Original set of charges Modlified set of charges
L Coul Absolute Coul Absolute
Solvent A Gy so Oeate | DsonOrate Ao Goate e Ao, Geate A -
Deviation Deviation
n-hexane -16.6 -18.2, 0 -18.2, 1.6 0 -18.2, 1.6
ethylbenzene - UA -18.35 0 -18.35 0.2 0 -18.3; 0.2
ethylbenzene - EH 18l -16.7, -0.64¢ -17.3, 0.8 -0.53, 17.2, 0.9
1-octanol -15.9 -16.1; -0.69, -16.8; 0.9 -1.11, -17.24 1.3
acetone -18.3 -17.1, -2.15, -19.3, 1.0 -3.46; -20.6; 23
water” -3.6 5.5 -5.04, 0.5 4.1 -9.13, -3.65 0.0
Overall | 0.9° 16" Overall | 14" 11°
*From ref.*

®Evaluated for all the solvents except water

¢ Considering the full data set
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Table 4: Experimental and predicted Gibbs energy of solvation (kJ/mol) for ethanol in different solvents. The subscripts give the statistical accuracy of the

last decimal point shown.

Absolute deviation

Solvent Ay, GExp Ao, Gf;jc Ay, GLCa(/)f l A G (kJ/mol)
n-hexane -10.1 -6.5 -0.06, -6.6, 3.5
ethylbenzene - UA 126 -5.6; 0 -5.6; 7.0
ethylbenzene - EH -5.33 -6.33; -11.6; 1.0
1-octanol -18.4 -4.4, -14.1, -18.4, 0.0
acetone -18.4 -5.34 -11.10, -16.4, 2.0
Water -21.1 8.0, -28.33, -20.1, 1.0
Overall 0.75
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Table 5: Experimental and predicted Gibbs energy of solvation values (in kJ/mol) for acetone in different solvents using analytical integration for the LJ term.

The subscripts give the statistical accuracy of the last decimal point shown.

Solvent Agn Gy A, G A, G ANg),G Absolute deviation

n-hexane -10.9 -11.464 0 -11.464 0.6
ethylbenzene - UA -11.4, 0 -11.4, 2.9
ethylbenzene-EH 143 -11.3, -2.38, -13.7; 0.6
1-octanol -13.2 -9.9, -2.29; -12.2, 1.0
acetone -17.3 -10.8, -5.905 -16.7 0.6

water 1159 6.45, '12'933: '6'486: 9'4:
-22.405 -15.956 0.05

Overall 1.2%0.3°

*Using the original acetone TraPPE parameters

® Using optimized atomic partial charges for acetone in the water phase
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Table 6: Predicted partition coefficient data from MD simulations. Available experimental data are given in parentheses.

Solute log P
Solvent pair propane benzene ethanol acetone
1-octanol / water 240 (24) 2.38(2.1) -0.30 (-0.3) 1.00° ; -0.66¢ (-0.24)
n-alkane” / water 2.56 2.56 (2.1) -2.37 (-2.3) 0.87°;-0.79 (-0.9)
acetone / water 2.58 2.89 -0.65 1.79° 5 0.13¢
ethylbenzene / water 2.70 2.58 -1.49 1.27°;-0.39°
n-alkane® / 1-octanol 0.15 0.18 -2.07 -0.13
acetone / 1-octanol 0.18 0.51 -0.35 0.79
ethylbenzene / 1-octanol 0.30 0.19 -1.19 0.26
acetone / n-alkane® 0.02 0.33 1.72 0.92
ethylbenzene / n-alkane® 0.14 0.02 0.88 0.39
ethylbenzene / acetone 0.12 -0.32 -0.84 -0.53

*alkane solvent is n-hexadecane for solvation of propane and n-hexane for all other solutes.
® Using the original acetone TraPPE parameters

¢ Using optimized atomic partial charges for acetone solvated in water
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Figure 1: Derivative of the total Hamiltonian of the system with respect to time for several discrete A values for the LJ decoupling of benzene in n-hexane.

27



30 T T T T T T T T T

<0 1
2 E
T2
-30 4
—i— Octanol
—@— Hexadecane _
{ |—4&— Acetone
—w— Ethylbenzene-EH i
—<4— Water
_60 T I ] l T l L} l T
0.0 0.2 04 0.6 0.8 1.0

Figure 2: Derivative of the total Hamiltonian of the system with respect to the coupling parameter A for the LJ decoupling of propane in different solvents.
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Figure 3: Overall comparison of experimental data and MD predictions for the Gibbs energy of solvation (in kJ/mol) of different solutes (propane, benzene,
ethanol and acetone) in solvents of different polarity. For acetone, the open symbol refers to the original TraPPE point charges in the water phase (see Table
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