496 research outputs found

    Wetting of anisotropic sinusoidal surfaces - experimental and numerical study of directional spreading

    Get PDF
    Directional wettability, i.e. variation of wetting properties depending on the surface orientation, can be achieved by anisotropic surface texturing. A new high precision process can produce homogeneous sinusoidal surfaces (in particular parallel grooves) at the micro-scale, with a nano-scale residual roughness five orders of magnitude smaller than the texture features. Static wetting experiments have shown that this pattern, even with a very small aspect ratio, can induce a strong variation of contact angle depending on the direction of observation. A comparison with numerical simulations (using Surface Evolver software) shows good agreement and could be used to predict the fluid-solid interaction and droplet behaviour on textured surfaces. Two primary mechanisms of directional spreading of water droplets on textured stainless steel surface have been identified. The first one is the mechanical barrier created by the textured surface peaks, this limits spreading in perpendicular direction to the surface anisotropy. The second one is the capillary action inside the sinusoidal grooves accelerating spreading along the grooves. Spreading has been shown to depend strongly on the history of wetting and internal drop dynamics

    Production of Acacia auriculiformis A. Cunn. ex Benth. for reforestation in southern Benin

    Get PDF
    The viability of Acacia auriculiformis production system in southern Benin was studied from an analytical perspective combining the production techniques and the financial profitability. The driving research question was as follows: "Will the nurseries be able to supply the seedlings suited to successful reforestation programmes?" A survey was carried out among nursery holders in the Atlantique Department. The snowball sampling method enabled to survey 55 nursery holders, based on semi-structured interviews. Respondents provided data on the organisation of production, production techniques, production costs, and sales revenues. There were two types of nurseries: individual nurseries and collective nurseries. The stages of acacia seedlings production were as follows: seed collection, dormancy breaking, sowing, and cares for young seedlings. Overall, the production techniques used by nursery holders were effective. The net revenue for 1000 seedlings ranged between XOF 9000 and 26000. Collective nurseries had lower production costs, hence higher revenues, compared to individual nurseries. It is essential to support nursery holders through capacity strengthening training and the availability of good quality seeds

    Self-folding nano- and micropatterned hydrogel tissue engineering scaffolds by single step photolithographic process

    Get PDF
    Current progress in tissue engineering is focused on the creation of environments in which cultures of relevant cells can adhere, grow and form functional tissue. We propose a method for controlled chemical and topographical cues through surface patterning of self-folding hydrogel films. This provides a conversion of 2D patterning techniques into a viable method of manufacturing a 3D scaffold. While similar bilayers have previously been demonstrated, here we present a faster and high throughput process for fabricating self-folding hydrogel devices incorporating controllable surface nanotopographies by serial hot embossing of sacrificial layers and photolithography

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity

    Role of culture conditions on in vitro transformation and cellular colonization of biomimetic HA-Col scaffolds

    Get PDF
    We have recently developed new 3D hydroxyapatite/collagen (50/50 wt%) scaffolds using a biomimetic synthesis approach. The first in vitro tests performed in static culture showed a limited cell colonization and survival inside the scaffolds. The current study evaluated in dynamic culture the scaffold changes and colonization by human immortalized osteoprogenitor STRO-1A cells. The stability of our scaffolds in the different culture conditions (static, low flow, high flow) was validated by the maintenance of the pore diameter and interconnectivity over 21 d. The colonization and the viability of STRO-1A cells inside the scaffolds were further evaluated on histological sections. It was demonstrated that only the high flow-rate allowed cell survival after 7 d and a complete scaffold colonization. Moreover, the colonization and viability were different in function of the scaffold position inside the perfusion container. The differentiation markers (alkaline phosphatase activity, type I procollagen and osteocalcin synthesis) of STRO-1A cells were analyzed in the culture medium after 7, 14 and 21 d. The low flow-rate increased significantly the three markers compared with static conditions. In contrast, markers were reduced in high flow-rate compared with low flow-rate. To explain this surprising result, we hypothesized that the different molecules were actually adsorbed on the scaffold because of the closed circuit used in the high flow-rate conditions. In summary, this study provides original results on the influence of flow rate but mostly of the circuit used (open/closed) on the structural modifications and cell colonization of collagen-HA scaffolds

    Managing the complexity of doing it all : an exploratory study on students' experiences when trained stepwise in conducting consultations

    Get PDF
    Background: At most medical schools the components required to conduct a consultation, medical knowledge, communication, clinical reasoning and physical examination skills, are trained separately. Afterwards, all the knowledge and skills students acquired must be integrated into complete consultations, an art that lies at the heart of the medical profession. Inevitably, students experience conducting consultations as complex and challenging. Literature emphasizes the importance of three didactic course principles: moving from partial tasks to whole task learning, diminishing supervisors' support and gradually increasing students' responsibility. This study explores students' experiences of an integrated consultation course using these three didactic principles to support them in this difficult task. Methods: Six focus groups were conducted with 20 pre-clerkship and 19 clerkship students in total. Discussions were audiotaped, transcribed and analysed by Nvivo using the constant comparative strategy within a thematic analysis. Results: Conducting complete consultations motivated students in their learning process as future physician. Initially, students were very much focused on medical problem solving. Completing the whole task of a consultation obligated them to transfer their theoretical medical knowledge into applicable clinical knowledge on the spot. Furthermore, diminishing the support of a supervisor triggered students to reflect on their own actions but contrasted with their increased appreciation of critical feedback. Increasing students' responsibility stimulated their active learning but made some students feel overloaded. These students were anxious to miss patient information or not being able to take the right decisions or to answer patients' questions, which sometimes resulted in evasive coping techniques, such as talking faster to prevent the patient asking questions. Conclusion: The complex task of conducting complete consultations should be implemented early within medical curricula because students need time to organize their medical knowledge into applicable clinical knowledge. An integrated consultation course should comprise a step-by-step teaching strategy with a variety of supervisors' feedback modi, adapted to students' competence. Finally, students should be guided in formulating achievable standards to prevent them from feeling overloaded in practicing complete consultations with simulated or real patients

    Surface Texturization of Breast Implants Impacts Extracellular Matrix and Inflammatory Gene Expression in Asymptomatic Capsules:

    Get PDF
    Background: Texturing processes have been designed to improve biocompatibility and mechanical anchoring of breast implants. However, a high degree of texturing has been associated with severe abnormalities. In this study, the authors aimed to determine whether implant surface topography could also affect physiology of asymptomatic capsules. Methods: The authors collected topographic measurements from 17 different breast implant devices by interferometry and radiographic microtomography. Morphologic structures were analyzed statistically to obtain a robust breast implant surface classification. The authors obtained three topographic categories of textured implants (i.e., “peak and valleys,” “open cavities,” and “semiopened cavities”) based on the cross-sectional aspects. The authors simultaneously collected 31 Baker grade I capsules, sorted them according to the new classification, established their molecular profile, and examined the tissue organization. Results: Each of the categories showed distinct expression patterns of genes associated with the extracellular matrix (Timp and Mmp members) and inflammatory response (Saa1, Tnsf11, and Il8), despite originating from healthy capsules. In addition, slight variations were observed in the organization of capsular tissues at the histologic level. Conclusions: The authors combined a novel surface implant classification system and gene profiling analysis to show that implant surface topography is a bioactive cue that can trigger gene expression changes in surrounding tissue, even in Baker grade I capsules. The authors’ new classification system avoids confusion regarding the word “texture,” and could be transposed to implant ranges of every manufacturer. This new classification could prove useful in studies on potential links between specific texturizations and the incidence of certain breast-implant associated complications
    • 

    corecore