
Surface texturation of breast implant impacts extracellular matrix and inflammatory 

gene expression in asymptomatic capsule  

 

Isabelle Brigaud1,2(PhD), Charles Garabédian3 (MSc), Nathalie Bricout4 (MD), Laurent 

Pieuchot1,2 (PhD), Arnaud Ponche1,2 (PhD), Raphaël Deltombe3 (PhD), Rémi Delille3 (PhD), 

Michael Atlan5,6 (MD, PhD), Maxence Bigerelle3 (PhD), Karine Anselme1,2 (PhD) 

1. Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France 

2. Université de Strasbourg, France 

3. Université de Valenciennes et du Hainaut-Cambrésis, LAMIH UMR CNRS 8201, 

Valenciennes, France 

4. Private Hospital Saint Germain, Saint-Germain-en-Laye, France 

5. Plastic Reconstructive Surgery, Microsurgery, Tissular Regeneration Department, Tenon 

Hospital Paris, F-75020 Paris, France.  

6. Université de Médecine de la Sorbonne, Paris VI, F-75013 Paris, France.  

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by univOAK

https://core.ac.uk/display/322602228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Corresponding authors: 

Brigaud Isabelle, PhD 

Institut de Science des Materiaux de Mulhouse 

IS2M - UMR CNRS 7361 - UHA 

15 rue Jean Starcky, B.P. 2488 

68057 Mulhouse Cedex, France 

isabelle.brigaud@uha.fr 

 

Karine Anselme, PhD 

Institut de Science des Materiaux de Mulhouse 

IS2M - UMR CNRS 7361 - UHA 

15 rue Jean Starcky, B.P. 2488 

68057 Mulhouse Cedex, France 

karine.anselme@uha.fr 

 

Financial disclosure statement: the authors have the following to disclose 

Dr Bricout is an R&D consultant for Groupe Sebbin. Mr Garabédian is employed by Groupe 

Sebbin. His PhD research is funded by Sebbin, as part of the French government CIFRE 

program (grant CIFRE 2015– 0843). The other authors declare no potential conflicts of interest 

with respect to the research, authorship, and publication of this article. 

  

mailto:isabelle.brigaud@uha.fr
mailto:Karine.anselme@uha.fr


Presented at: 

1) IMCAS, Paris, France, 31th January-2nd February 2019. “Surface texturation of breast 

implant impacts extracellular matrix and inflammatory gene expression in asymptomatic 

capsule” (oral). I Brigaud, C Garabédian, N Bricout, K Anselme 

2) MATERIAUX, Strasbourg, France, November 19-21th  2018; “New, simple and biologically 

validated breast implant classification” (poster). C. Garabédian, I. Brigaud, L. Pieuchot, A. 

Ponche, M. Bigerelle, K. Anselme 

 3) ESB, Maastricht, Holland, September 9-13 2018. Molecular biology-based breast implant 

surface classification (poster).  C. Garabédian, I. Brigaud, K. Anselme, M. Bigerelle 

4) BIOMAT, Ambleteuse, France, June 12-16 2017. Biomarker-based evidence of the breast 

implant texturation benefit (oral). C. Garabedian, I. Brigaud, M. Bigerelle, K. Anselme 

 

 

Short Running Head: Breast implant surface texturing effects 

  

  



ABSTRACT 

Background: Texturing processes have been designed to improve biocompatibility and 

mechanical anchoring of breast implants. However, high texturing degree has been associated 

with severe pathologies. Here, we aimed to determine whether implant surface topography 

could also affect physiology of asymptomatic capsules. 

Methods: We collected topographical measurements from 17 different breast implant devices 

by interferometry and X-ray microtomography. Morphological structures were statistically 

analyzed to obtain a robust breast implant surface classification. We obtained 3 topographical 

categories of textured implants (“peak and valleys”, “open cavities”, and “semi-opened 

cavities”) based on the cross-sectional aspects. We simultaneously collected 31 Baker I 

capsules, sorted them according to the new classification, established their molecular profile, 

and examined the tissue organization. 

Results: Each of the categories showed distinct expression patterns of genes associated with 

the extracellular matrix (Timp and Mmp members) and inflammatory response (Saa1, Tnsf11, 

Il8), despite originating from healthy capsules. Besides, slight variations were observed in the 

organization of capsular tissues at the histological level. 

Conclusions: We combined a novel surface implant classification system and gene profiling 

analysis to show that implant surface topography is a bioactive cue that can trigger gene 

expression changes in surrounding tissue, even in Baker I capsules. Our new classification 

system avoids confusions around the word “texture”, and could be transposed to implant ranges 

of every manufacturer. This new classification could prove useful in studies on potential links 

between specific texturations and the incidence of certain breast-implant associated 

complications.  

  



INTRODUCTION 

Breast implant design involves the selection and combination of several features such as 

implant filling (silicone gel or saline solution), shape (round or anatomically shaped), volume, 

and surface (smooth or textured). Implant surface is essential to the performance and safety of 

breast implant devices. Surface topography—the intricate relief of the outer implant shell—

directly affects soft tissue reaction and fibrous tissue formation around the implant, which, if 

disrupted, could lead to post-surgery complications such as capsular contracture.1,2 The link 

between texturation of implant surface and medical outcomes remains controversial. 

“Macrotextures” were designed to promote tissue adhesion to the implant.3 However, their 

impact on capsular contracture4–7 and rare long-term complications such as double capsule8, 

late seroma, and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL)9–13 

remains unclear. The relationship between the mechanisms governing breast implant 

biocompatibility associated with implant surface properties is therefore of great interest.  

The formation of capsular tissue around an implant is a physiological wound-healing response 

to foreign elements. The host organism reacts to the presence of an implant by eliciting local 

extracellular matrix (ECM) reorganization. These events are tightly regulated by the TGFβ 

signaling pathway, which directly mediates downstream expression of about 60 ECM-related 

genes, including the expression balance of matrix-remodeling enzymes such as 

metalloproteinases (MMPs) or tissue inhibitors of proteinases (TIMPs).14 The inflammatory 

response plays a major role in implant integration15, which can also be promoted by MMPs.16 

Capsule formation typically isolates the foreign body from the host tissue, after which the 

reaction becomes quiescent or ceases, resulting in a stable, compatible, and soft peri-prosthetic 

capsule. We hypothesized that breast implant topography could mediate cell signaling, 

particularly during the initial formation of capsular tissue. We assumed that different degrees 



of surface texturation would elicit specific gene activation/response profiles in peri-prosthetic 

cells, even in healthy tissues such as Baker I capsules.17 

In this study, we conducted a statistically robust but simple and comprehensive classification 

of breast implants based on the degree of surface texturation. We then compared the impact of 

different categories of implants on the expression of a panel of ECM and inflammatory genes 

in healthy capsules. We also examined the effect of such implants on peri-prosthetic tissue 

organization.  

MATERIALS AND METHODS 

Substrate surface measurement  

Surface topography of 17 implant types from 11 independent companies were measured and 

analyzed as a representative sample of available marketed implants (see table, supplemental 

digital content 1). The devices examined were new, sterile, and within their period of use. We 

collected 3 sets of samples from 3 separate locations (dome, edge, and base), obtaining 9 

independent measures per implant. Each sample was taken from the implant shells by using a 

punch to obtain a final circular area of 10 mm², and sonicated in 10% alcohol solution for 10 

minutes for cleaning. Samples were measured by interferometry (NewView™ 7300 Optical 

Surface Profiler; Zygo Corp., Middlefield, CT, USA) for “peak and valley” (PV)-patterned 

surfaces or X-ray Microtomography (SkyScan™ 1172; Bruker BioSpin Corporation, Billerica, 

MA, USA) for “open-cavities (OC)” and “semi-opened cavity" (SOC)-patterned surfaces, as 

described previously.18 Based on the international breast implant standard (ISO 14607:2018), 

we restricted our measurements to 4mm2 within the circular sample.  



 

Classification  

Topography-based breast implant classification was established using robust statistical 

discriminant analyses, which will be described in detail in a subsequent publication. Briefly, 

surface topography measurements were computed using Mountains® software (Digital Surf, 

Besançon, France) and MesRug® (MesRug Data System, Lieu Saint Amand, France). By 

applying filters, surfaces were decomposed in elementary surfaces to scale down intricate 

surface roughness properties. This process was applied independently to the 42 most common 

roughness parameters (defined in ISO 25178 and EUR 15178N). Classification was established 

based on the resulting values. Implants were categorized according to morphological features 

observed from surface cross-section and topography analyses as “peak and valley” (PV), “open-

cavities (OC)”, and “semi-opened cavity" (SOC). Cross-sections based on samples analyzed by 



X-ray microtomography were established after image reconstruction as described previously.18 

For the interferometric measurements, a 2mm-long profile was extracted from the topography, 

by using the Mountains® software, to construct the cross-section. 

Patient information and related breast implant capsule sampling  

Twenty female patients with 7 different types of textured breast implants, who underwent breast 

revision surgeries between February 2017 and February 2018, were recruited for this study 

(average age: 51 ± 15 years). A single surgeon performed all surgeries and tissue collection. 

Ethical approval was obtained from the institutional review board. Patients gave informed 

consent prior to participating. Thirty-one capsular tissue samples were collected; 5 were 

harvested from reconstructed breasts, and the rest from aesthetic surgeries. Fig.1 shows the 

reasons for revision surgery. 

 

The mean duration of implantation was 9 ± 6 years (range: 1–21 years). Implant location was 

subglandular for 11 implants and submuscular for 16. Two devices were implanted under a flap 

while the positions of 2 implants were not reported. Twenty-eight implants were silicone gel-

filled and 3 were saline-filled. The mean implant volume was 286 ± 96 ml (range: 120-525 ml). 

For more clarity, data are summarized in Fig. 2. In this study, we restricted our sampling to 

Baker I-classified capsular tissues.17 Samples from patients carrying gene mutations for fibrosis 

or with assessed implant rupture were excluded. 



 

RNA extraction, cDNA synthesis, and quantitative PCR 

Collected tissues were immediately stored in RNA later solution (Invitrogen™) at -20°C until 

further use. For RNA extraction, tissues were sequentially chopped into small pieces with a 

razor, placed in an Eppendorf containing 600 µL of chilled Trizol, crushed manually, and 

vortexed for 5 min at max speed (3200 rpm). Total RNA was extracted using the Direct-zol™ 

RNA MiniPrep (Ozyme), according to the manufacturer’s instructions. RNA purity and 

concentration were evaluated using a NanoDrop OneC (Thermo Fischer Scientific). cDNAs 

were synthesized from samples normalized to 500 ng RNA, by using the iScript™ cDNA 

synthesis Kit (Bio-Rad). qPCR was carried out as described previously.19 Calibration sample 

was facing an OC-patterned topography and served to calculate relative gene quantifications 

for all the samples, irrespectively of texture group.  

Histological studies  

Histological studies were performed on peri-prosthetic capsules surrounding only OC- and 

SOC-patterned implants and samples were collected from the same specimens used for 



molecular experiments. Medical protocol did not allow histological studies on patients 

undergoing surgery for aesthetic reasons, which included all 8 PV-patterned implants. Serial 

sections of 3-µm thickness were cut from paraffin-embedded breast capsules by using a 

microtome, and subsequently stained using hematoxylin-eosin. Images were acquired using 

light microscopy under ×20 objective (Nikon Eclipse Ts2). Features that were analyzed 

included presence of immune cells, vascularization, structures of collagen matrix, and absence 

of malignancy. 

qPCR statistical analyses  

Molecular gene expression profiles were generated as boxplots with mean value, standard error 

of the mean (SEM), and outliers, by using the Plotly software. Statistical analyses were 

performed by using Student t-test and non-parametric Mann-Whitney post-test (GraphPad 

Prism Software, San Diego, CA, USA). From these analyses, the level of significance was 

considered to be p < 0.001. Because of intrinsic constraints linked to the qPCR technique, we 

considered samples as biologically different for expression ratios higher (overexpression) or 

lower (repression) than ×3, even if statistical tests were positive. 

RESULTS 

CLASSIFICATION 

Fig. 3 illustrates topographical features shared by implants grouped in the same category, giving 

a representative aspect of the outer implant shell which directly contacts breast tissues. PV-

patterned surfaces displayed regular peak and valley structures with heights of low amplitude 

(<100 µm). In comparison, OC-patterned surfaces mostly presented curve-shaped open cavities 

features of amplitude ranging from 50 µm to 300 µm. Topographies and cross-sections of SOC-

surfaces showed repetitive and regularly distributed unsealed cuboid-like patterns of high 

amplitude (>400 µm). Cuboid structures protruding from the main surface exposed thin and 



angled edges at the implant interface. This specific cuboid pattern is generated by salt-loss 

technique followed by surface brushing treatment.  

 

GENE EXPRESSION  

We evaluated the effects of the 3 breast implant topographical classes in healthy samples on 

expression of foreign body reaction and inflammatory related genes, and capsular tissue 

organization. We excluded any chance of expression of the BIA-ALCL markers Cd30 and Alk 

in our sampling.20 These two markers were not significantly present in our entire sample set 

(data not shown). 

Relative expression of matrix metalloproteinases (MMPs) 

Figure 4 shows the relative expression of Mmp2, MMp9, and Mmp12. No significant change in 

Mmp2, Mmp9, or Mmp12 expression levels were observed in peri-prosthetic cells in contact 



with PV-patterned surfaces compared to the OC group. On the contrary, Mmp2 levels were 

unchanged (Fig. 4A), and Mmp9 and Mmp12 were significantly up-regulated (44 ± 11 and 46 

± 21-fold respectively) in tissues in contact with SOC-patterned implants, compared to those in 

contact with PV- and OC-patterned implants (Fig. 4B and 4C). Thus, SOC-patterned implants 

likely trigger Mmp9 and Mmp12, but not Mmp2, in the surrounding tissues.  

 

Relative expression of tissue inhibitor of metalloproteinases (TIMPs) 

Because TIMP activity closely balances that of the MMPs, we focused our analyses on this 

gene category (Fig. 5). In tissues in contact with PV-patterned implants, we found that Timp4 

gene expression was significantly up-regulated (4.48 ± 0.94-fold; Fig. 5C) compared to that in 

tissues associated with OC (1.42 ± 0.20-fold) or SOC (0.35 ± 0.04-fold) patterned implants. In 

tissues in contact with SOC-patterned implants, Timp1 and Timp4 gene expression varied 

inversely, with Timp1 expression significantly up-regulated (4.0 ± 0.61-fold; Fig. 5A) and 

Timp4 expression down-regulated (0.35 ± 0.04-fold) compared to the PV and OC groups (Fig. 

5C). Timp2 gene expression was not significantly different in the three groups (Fig. 5B). We 

concluded that contact of PV and SOC-patterned implants with peri-prosthetic tissues affects 

Timp1 and/or Timp4 expression. 



 

Relative expression of genes related to the inflammatory response 

Immunological response mechanisms are essential for implant integration. We therefore 

examined the expression of different genes involved in these processes (Figure 6). Variations 

in Tgfβ1 (Figure 6A) and Saa1 (Figure 6B) expression were not significant among the samples 

tested. Capsular tissues located in the vicinity of SOC-patterned implants exhibited up-

regulated expression of Il8 (3.95 ± 0.96-fold) compared to those in the OC and PV-patterned 

implant groups (Figure 6C). Tnfs11 was drastically down-regulated in the SOC-patterned 

implant group (0.19 ± 0.04-fold) compared to the OC (1.15 ± 0.20-fold) and PV (0.88 ± 0.09-

fold) groups. Thus, peri-prosthetic cells elicit immunological responses, when in contact with 

an implant surface, which depend on the topography of the implant.  



 

HISTOLOGICAL ANALYSES 

Histology of capsules located near OC- or SOC-patterned implants revealed discrete differences 

in tissue organization. Irrespective of the nature of the implant, we observed tissues with tightly 

woven fibroblast fibers oriented parallel to the implant surface. A layer of immune 

mononucleated cells of variable density was observed directly at the implant interface, and their 

distribution was more scattered within the capsules. Compared to tissues facing OC-patterned 

surfaces, tissues facing SOC-patterned surfaces exhibited more fibro-hyaline structures and a 

higher occurrence of small congestive capillary vessels (Figure 7). We concluded that SOC-

patterned implants promote discrete tissue vascularization. 



 

DISCUSSION 

Elucidating the relationship between degree of breast implant surface texturation and clinical 

outcomes could greatly improve implant integration. In this study, we linked for the first time 

characteristics of implant surface topography to gene response in host healthy tissues. We used 

a new breast implant classification system based on robust statistical analyses, with simple and 

meaningful nomenclature. Detailed comparison with existing classifications (21,22,23), although 

important, are beyond the scope of this report and will be discussed in a subsequent paper. 

Briefly, our new classification provides a relevant tool to standardize breast implant prostheses 

into topographical categories with the aim to end with confusions existing around the 

employment of the word “texture”.  In light of our new classification, we examined the 

expression profiles of genes that are essential to foreign body reaction. The formation of 

capsular tissue around an implant involves inflammatory and ECM remodeling responses 

mediated by TGFβ1. Tgfβ1 expression was found at a basal level, indicating that wound healing 

was completed and the peri-prosthetic capsule had reached a steady state. Thereafter, we 

determined whether the establishment of appropriate bio-interfaces between peri-prosthetic 

cells and dissimilar breast implant topographies was associated with specific reprogramming of 



dynamic MMP/TIMP balance activity. ECM-related gene expression levels were significantly 

affected by the different surfaces. Compared to OC-patterned surfaces, our internal reference 

for gene variations, only PV-patterned surfaces were correlated with Timp4 up-regulation, 

indicating that host organisms recognize these two types of surfaces as relatively similar. 

The gene expression profile of peri-prosthetic cells in contact with SOC-patterned surfaces was 

drastically different. Timp4 and Tnsfs11 expression was down regulated. Further, Mmp9, 

Mmp12, Timp1, and Il8 were considerably up regulated. We concluded that establishment of an 

adequate bio-interface for breast implant integration requires adaptation of peri-prosthetic cells 

to implant topography, which is molecularly modulated through differential and specific 

Mmp/Timp gene expression. Two studies 24,25 have shown that Baker III capsules also exhibit 

significant changes in Timp1, Timp4, and Tnfs11 expression. It is striking that these 

asymptomatic capsules share molecular hallmarks with contracted (fibrotic) capsules. 

However, accurate comparison of the gene expression profiles observed in this study with those 

described previously is not possible because previous studies did not distinguish between 

degrees of implant texturation and used different internal calibrators for qPCR calculations. 

Therefore, we could not conclude which type of surface favors capsular contracture. To 

elucidate this point, further experiments comparing expression levels of these markers in the 

context of texturation degree in contracted capsules, using our internal calibrator, are required.  

At the tissue level, capsules interfacing SOC-patterned implants were associated with slightly 

higher occurrence of capillary vessels than were OC-patterned implants. Interestingly, Mmp9 

gene expression, which is increased in these capsules, dominates the regulation of angiogenesis 

through several catalytic and non-catalytic functions. Notably, it releases proangiogenic 

chemokines such as IL8, whose gene expression was also up-regulated.26–28 IL8, originally 

identified as a neutrophil chemoattractant29, is also known for its pro-inflammatory activity. 

However, we could not confirm this role, since this type of immune cell was not distinguished 



in histological sections. Nevertheless, we observed an accumulation of histiocytes at the 

interface for any surface, as described in previous studies.25 

Finally, we observed drastic down-regulation of Tnsf11, which is expressed in fibroblasts30 and 

is involved in various physiological processes including immunity. TNFSF11 interacts with the 

immune system via induction of pro-inflammatory cytokines, acting on several immune cells 

including monocytes, T cells, and B cells. Besides a role in activating the adaptive immune 

response, it is known to regulate immune tolerance,31 a process by which the body reduces or 

eliminates an immune response to chronic agents.32 Considering its pleiotropic activity, further 

functional experiments are required to elucidate the role of TNFSF11 in peri-prosthetic cells. 

In this study, we showed that at the molecular level, peri-prosthetic cells facing PV or OC-

patterned surfaces react similarly, while SOC-patterned surfaces promote drastic gene 

expression variations. Giot et al8 showed that “macro-texturation” (herein classified in the SOC 

group) clearly induces strong tissue in-growth into its cavities, which accounts for the 

exceptional stability of the capsule-implant complex. As illustrated in our implant cross-

sections, tissue ingrowth occurs inside unsealed cuboid-like patterns with possibly fragile thin 

walls. Thus, the shearing forces between implant and capsule caused by natural body 

movements, applied on strongly attached ingrowth tissue, could induce tissue alterations. The 

host body is therefore forced to undergo constant tissue remodeling as highlighted by 

Mmp/Timp gene expression modulation. 

Our data show that surface topography features give healthy peri-prosthetic cells specific 

molecular identity, and could, in combination with other factors (such as biofilms), contribute 

to the development of breast implant-associated complications. Further studies on the 

combinatorial effects of surface topography with other factors such as presence of a biofilm, 

degree of capsule adhesion, and implant positioning 6–38 are required. Larger-scale studies both 

in term of tissue sampling and gene expression analyses (RNAseq) are also required. In 



conclusion, design of surface topography is of prime importance to ensure safe and long-term 

physiological integration of breast implants. 

  



Figure 1. Recapitulative diagrams of the clinical reasons for implant removal. Percentage (%) 

of collected capsules A) after aesthetic surgery (n = 26) and B) after breast reconstruction (n = 

5).  

Figure 2. Recapitulative tab gathering implant characteristics and patient clinical data 

established from the periprosthetic breast capsule (Baker I) tissue sampling. Implant positions: 

subglandular (SG), submuscular (SM), not reported (NR). 

Figure 3. Illustration of the main surface structures shared by breast implant devices binding 

in each of the 3 categories, namely PV, OC and SOC. Top view topography and corresponding 

cross-section is given for one device (underlined market reference) as a representative example 

of the entire category. A color calibration bar in micrometer (µm) indicates the height of the 

relief on the topographies where black and red represents respectively the lowest and the highest 

amplitude of topography. Bar scale represents 1,0 mm in length.  

Figure 4. Boxplots depicting relative gene expression levels Mmp2 (A), Mmp9 (B), and 

Mmp12 (C) in healthy tissue (Baker I grade) in contact with peak and valley (PV), open cavities 

(OC), or semi-opened cavity (SOC)-patterned breast implants. Empty circles correspond to 

outlier values, dotted and full lines correspond to the mean and median values respectively. * p 

< 0.001 (Student t-test and non-parametric Mann Whitney tests). 

Figure 5. Boxplots depicting relative gene expression levels of tissue inhibitors of 

metalloproteinases Timp1 (A), Timp2 (B), and Timp4 (C) from healthy tissue (Baker I grade) 

in contact with peak and valley (PV), open cavities (OC), or semi-opened cavity (SOC)-

patterned breast implants. Empty circles correspond to outlier values, dotted and full lines 

correspond to the mean and median values respectively. * p < 0.001 (Student t-test and non-

parametric Mann Whitney test). 



Figure 6. Boxplots depicting relative gene expression levels of the pro-fibrotic transforming 

growth factor beta 1 Tgfβ1 (A), TNF superfamily member11 (Tnfs11) (B), C-X-C motif 

chemokine ligand 8 (Il8) (C), and inflammatory markers serum amyloid 1 (Saa1) (D) from 

healthy tissue (Baker I grade) in contact with peak and valley (PV), open cavities (OC), or semi-

opened cavity (SOC)-patterned breast implants. Empty circles correspond to outlier values, 

dotted and full lines correspond to the mean and median values respectively. * p < 0.001 

(Student t-test and non-parametric Mann Whitney tests). 

Figure 7. Histological characteristics of Baker I breast tissues in contact with OC-patterned 

implants or SOC-patterned implants. Images from 2 independent patients for each condition. 

No malignancies were identified. Tissues facing OC- or SOC- patterned implants exhibit tightly 

woven fibroblast fibers oriented parallel to the implant surface. Irrespective of the implant 

texturation, tissues commonly exhibited a layer of mononucleated cells at the implant interface 

(dotted line) together with discrete and scattered distribution of histiocytes within the inner part 

of the capsules. Compared to tissues facing OC-patterned surfaces, tissues facing SOC-

patterned surfaces exhibited more fibro-hyaline structures together with small congestive 

capillary vessels (black arrows). Scale bar: 100 µm.  

Supplemental digital content 1. Breast implant sampling used to establish topography-based 

classification. Commercial designation and company for each sample are specified. 
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