101 research outputs found

    Preimplantation Genetic Diagnosis in Europe

    Get PDF
    In vitro fertilisation (IVF) and preimplantation genetic diagnosis (PGD) are now well-established treatments and are provided in many European countries. However, regulations, practices, professional standards and accreditation requirements are often markedly different between Member States (MS). Differences between MS seem to be becoming especially pronounced because of the interface between assisted reproduction and genetics. To assess the extent of these differences and try to obtain an initial picture of the overall situation in Europe, in March 2005 the Institute for Prospective Technological Studies (IPTS) of the European Commission's Joint Research Centre (JRC), the European Society of Human Genetics (ESHG) and the European Society for Human Reproduction and Embryology (ESHRE) organised a workshop on the abovementioned interface . The two-day event brought together 50 experts from different specialities to review current practices in Europe and discuss potential needs in this area. The first thing that became clear was that no full picture was available of PGD practice and provision in Europe. Secondly, the lack of quality assurance for these services in general was perceived as a potential problem. The participants in the workshop unanimously agreed that European clinics should be certified or accredited and that licensing systems should be developed by professional self-regulation. Minimum quality standards should be set. The lack of common European rules and regulations to guarantee minimum standards was said to be adding to the problem. However, quality assurance and accreditation have taken on new significance in the light of the recent EU Directive 2004/23/EC on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. Thirdly, as a result of the abovementioned differences between MS, patients are travelling abroad to gain access to treatment which is not available in their own country. This, in turn, sometimes requires movements of gametes (oocytes and sperm) and embryos within the EU. Whilst it is known that couples and reproductive tissue are moving around Europe, the extent is not known – especially in the new MS. Lastly, an overview of how the different regulatory frameworks are having an impact on the actual practices of PGD services was deemed necessary in order to gain a better understanding of the trans-border flows. Having pinpointed some of the needs in this area, the IPTS launched this study in an effort to address them and to obtain the missing knowledge on provision of PGD services in Europe. The aims of this study are two-fold: 1)to obtain a clear picture of current PGD practice in Europe, including the quality of the services and cross-border activities (flows of couples or reproductive tissue); 2)to carry out a comparative review of the different regulatory frameworks at MS level and identify potential gaps at European level and the impact these might have.JRC.J.5-Agriculture and Life Sciences in the Econom

    Adult-Onset ANCA-Associated Vasculitis in SAVI: Extension of the Phenotypic Spectrum, Case Report and Review of the Literature.

    Get PDF
    STING-associated vasculopathy with onset in infancy (SAVI) is an autosomal dominant disorder due to gain-of-function mutations in STING1, also known as TMEM173, encoding for STING. It was reported as a vasculopathy of infancy. However, since its description a wider spectrum of associated manifestations and disease-onset has been observed. We report a kindred with a heterozygous STING mutation (p.V155M) in which the 19-year-old proband suffered from isolated adult-onset ANCA-associated vasculitis. His father suffered from childhood-onset pulmonary fibrosis and renal failure attributed to ANCA-associated vasculitis, and died at the age of 30 years due to respiratory failure. In addition, an overview of the phenotypic spectrum of SAVI is provided highlighting (a) a high phenotypic variability with in some cases isolated manifestations, (b) the potential of adult-onset disease, and (c) a novel manifestation with ANCA-associated vasculitis

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    A standardized framework for the validation and verification of clinical molecular genetic tests

    Get PDF
    The validation and verification of laboratory methods and procedures before their use in clinical testing is essential for providing a safe and useful service to clinicians and patients. This paper outlines the principles of validation and verification in the context of clinical human molecular genetic testing. We describe implementation processes, types of tests and their key validation components, and suggest some relevant statistical approaches that can be used by individual laboratories to ensure that tests are conducted to defined standards

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls.

    Get PDF
    PURPOSE: Stringent variant interpretation guidelines can lead to high rates of variants of uncertain significance (VUS) for genetically heterogeneous disease like long QT syndrome (LQTS) and Brugada syndrome (BrS). Quantitative and disease-specific customization of American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines can address this false negative rate. METHODS: We compared rare variant frequencies from 1847 LQTS (KCNQ1/KCNH2/SCN5A) and 3335 BrS (SCN5A) cases from the International LQTS/BrS Genetics Consortia to population-specific gnomAD data and developed disease-specific criteria for ACMG/AMP evidence classes-rarity (PM2/BS1 rules) and case enrichment of individual (PS4) and domain-specific (PM1) variants. RESULTS: Rare SCN5A variant prevalence differed between European (20.8%) and Japanese (8.9%) BrS patients (p = 5.7 × 10-18) and diagnosis with spontaneous (28.7%) versus induced (15.8%) Brugada type 1 electrocardiogram (ECG) (p = 1.3 × 10-13). Ion channel transmembrane regions and specific N-terminus (KCNH2) and C-terminus (KCNQ1/KCNH2) domains were characterized by high enrichment of case variants and >95% probability of pathogenicity. Applying the customized rules, 17.4% of European BrS and 74.8% of European LQTS cases had (likely) pathogenic variants, compared with estimated diagnostic yields (case excess over gnomAD) of 19.2%/82.1%, reducing VUS prevalence to close to background rare variant frequency. CONCLUSION: Large case-control data sets enable quantitative implementation of ACMG/AMP guidelines and increased sensitivity for inherited arrhythmia genetic testing

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    A Novel Kindred with MyD88 Deficiency

    No full text
    SCOPUS: le.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Targeted capture sequencing in a large LQTS family reveals a new pathogenic mutation c.2038delG in KCNH2 initially missed due to allelic dropout

    No full text
    We present a new mutation in KCNH2 (c.2038delG) resulting in a frameshift and premature truncation of the IKr channel protein in a large LQTS family with several sudden death cases. This mutation was initially missed by mutation scanning with DHPLC due to allelic dropout and only retrieved after repeat genetic testing with targeted capture and massive parallel sequencing. There was full penetrance of this mutation, only if an individualized QT correction derived from 24-hour Holter data was used. This case again underscores the importance of repeat genetic testing in robust cases of LQTS that remained genotype negative with mutation scanning techniques.status: publishe
    • 

    corecore