64 research outputs found

    Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.

    Get PDF
    Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host

    A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress

    Get PDF
    Endoplasmic reticulum (ER) stress is increasingly recognized as an important mechanism in a wide range of diseases including cystic fibrosis, alpha-1 antitrypsin deficiency, Parkinson's and Alzheimer's disease. Therefore, there is an increased need for reliable and quantitative markers for detection of ER stress in human tissues and cells. Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum can cause ER stress, which leads to the activation of the unfolded protein response (UPR). UPR signaling involves splicing of X-box binding protein-1 (XBP1) mRNA, which is frequently used as a marker for ER stress. In most studies, the splicing of the XBP1 mRNA is visualized by gel electrophoresis which is laborious and difficult to quantify. In the present study, we have developed and validated a quantitative real-time RT-PCR method to detect the spliced form of XBP1 mRNA

    Modulation of Airway Epithelial Innate Immunity and Wound Repair by M(GM-CSF) and M(M-CSF) Macrophages

    Get PDF
    Airway epithelial cells and macrophages participate in inflammatory responses to external noxious stimuli, which can cause epithelial injury. Upon injury, epithelial cells and macrophages act in concert to ensure rapid restoration of epithelial integrity. The nature of the interactions between these cell types during epithelial repair is incompletely understood. We used an in vitro human coculture model of primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC) and polarized primary monocyte-derived macrophages. Using this coculture, we studied the contribution of macrophages to epithelial innate immunity, wound healing capacity, and epithelial exposure to whole cigarette smok

    Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D3 as host directed therapy

    Get PDF
    Background We have previously shown that 8 weeks’ treatment with phenylbutyrate (PBA) (500mgx2/day) with or without vitamin D3 (vitD3) (5000 IU/day) as host-directed therapy (HDT) accelerated clinical recovery, sputum culture conversion and increased expression of cathelicidin LL-37 by immune cells in a randomized, placebo-controlled trial in adults with pulmonary tuberculosis (TB). In this study we further aimed to examine whether HDT with PBA and vitD3 promoted clinically beneficial immunomodulation to improve treatment outcomes in TB patients. Methods Cytokine concentration was measured in supernatants of peripheral blood mononuclear cells (PBMC) from patients (n = 31/group). Endoplasmic reticulum stress-related genes (GADD34 and XBP1spl) and human beta-defensin-1 (HBD1) gene expression were studied in monocyte-derived-macrophages (MDM) (n = 18/group) from PBMC of patients. Autophagy in MDM (n = 6/group) was evaluated using LC3 expression by confocal microscopy. Results A significant decline in the concentration of cytokines/chemokines was noted from week 0 to 8 in the PBA-group [TNF-α (β = − 0.34, 95% CI = − 0.68, − 0.003; p = 0.04), CCL11 (β = − 0.19, 95% CI = − 0.36, − 0.03; p = 0.02) and CCL5 (β = − 0.08, 95% CI = − 0.16, 0.002; p = 0.05)] and vitD3-group [(CCL11 (β = − 0.17, 95% CI = − 0.34, − 0.001; p = 0.04), CXCL10 (β = − 0.38, 95% CI = − 0.77, 0.003; p = 0.05) and PDGF-β (β = − 0.16, 95% CI = − 0.31, 0.002; p = 0.05)] compared to placebo. Both PBA- and vitD3-groups showed a decline in XBP1spl mRNA on week 8 (p < 0.03). All treatment groups demonstrated increased LC3 expression in MDM compared to placebo over time (p < 0.037). Conclusion The use of PBA and vitD3 as adjunct therapy to standard TB treatment promoted favorable immunomodulation to improve treatment outcomes.This study was supported by the International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Sida (Sida-icddrb Agreement support; Grant 384, SWE-2008-065) and Swedish Strategic Foundation (SSF, Grant No. RBd08–0014), the Swedish Heart-Lung Foundation (Grant No. 2013–0366) and Swedish Research Council (Grant No. 2016–01496). No funding bodies had any role in the design of the study, collection, analysis, and interpretation of data and in writing the manuscript.Peer Reviewe

    Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin.

    Get PDF
    Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive NF-κB signalling in resting primary bronchial epithelial cells from ZZ patients compared with wild-type (MM) controls, and this appears to be mediated by mitogen-activated protein/extracellular signal-regulated kinase, EGF receptor and ADAM17 activity. Moreover, we show that rather than being a response to protein polymers, NF-κB signalling in airway-derived cells represents a loss of anti-inflammatory signalling by M α1-antitrypsin. Treatment of ZZ primary bronchial epithelial cells with purified plasma M α1-antitrypsin attenuates this inflammatory response, opening up new therapeutic options to modulate airway inflammation in the lung

    Smoking cessation and bronchial epithelial remodelling in COPD: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic Obstructive Pulmonary Disease (COPD) is associated with bronchial epithelial changes, including squamous cell metaplasia and goblet cell hyperplasia. These features are partially attributed to activation of the epidermal growth factor receptor (EGFR). Whereas smoking cessation reduces respiratory symptoms and lung function decline in COPD, inflammation persists. We determined epithelial proliferation and composition in bronchial biopsies from current and ex-smokers with COPD, and its relation to duration of smoking cessation.</p> <p>Methods</p> <p>114 COPD patients were studied cross-sectionally: 99 males/15 females, age 62 ± 8 years, median 42 pack-years, no corticosteroids, current (n = 72) or ex-smokers (n = 42, median cessation duration 3.5 years), postbronchodilator FEV<sub>1 </sub>63 ± 9% predicted. Squamous cell metaplasia (%), goblet cell (PAS/Alcian Blue<sup>+</sup>) area (%), proliferating (Ki-67<sup>+</sup>) cell numbers (/mm basement membrane), and EGFR expression (%) were measured in intact epithelium of bronchial biopsies.</p> <p>Results</p> <p>Ex-smokers with COPD had significantly less epithelial squamous cell metaplasia, proliferating cell numbers, and a trend towards reduced goblet cell area than current smokers with COPD (p = 0.025, p = 0.001, p = 0.081, respectively), but no significant difference in EGFR expression. Epithelial features were not different between short-term quitters (<3.5 years) and current smokers. Long-term quitters (≥3.5 years) had less goblet cell area than both current smokers and short-term quitters (medians: 7.9% vs. 14.4%, p = 0.005; 7.9% vs. 13.5%, p = 0.008; respectively), and less proliferating cell numbers than current smokers (2.8% vs. 18.6%, p < 0.001).</p> <p>Conclusion</p> <p>Ex-smokers with COPD had less bronchial epithelial remodelling than current smokers, which was only observed after long-term smoking cessation (>3.5 years).</p> <p>Trial registration</p> <p>NCT00158847</p

    Additional file 1: Figure S1. of Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae

    No full text
    MUC5AC and FOXJ1 basal expression in COPD and control donors. MUC5AC (oligomeric mucus/gel-forming, marker for mucus producing cells, 1A) and FOXJ1 (forkhead box J1, marker for ciliated cells, 1B) mRNA expression in untreated controls from COPD and control donors. Data are shown as normalized expression based on two reference genes, ATP5b and RPL13A. Statistical differences were studied with an independent nonparametric samples t-test. (PDF 71 kb
    corecore