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Abstract 

Alpha1-antitrypsin deficiency is the most widely recognised genetic disorder causing COPD.  

Mutant Z α1-antitrypsin expression has previous been linked to intracellular accumulation 

and polymerisation of this proteinase inhibitor.  Subsequently, this has been described to 

underlie an exaggerated endoplasmic reticulum (ER) stress response and enhanced NF-κB 

signalling.  However, whether monocyte-derived macrophages display the same features 

remains unknown.  Monocytes from homozygous PiZZ α1-antitrypsin deficiency patients and 

PiMM controls were cultured for 6 days in the presence of GM-CSF or M-CSF to obtain pro- 

and anti-inflammatory macrophages (mφ-1 and mφ-2, respectively).  We first show that in 

contrast to monocytes, pre-stressed mφ-1 and mφ-2 from healthy blood donors do display 

an enhanced ER stress response upon a LPS trigger (XBP1 splicing, CHOP, GADD34 and 

GRP78 mRNA).  However, this ER stress response did not differ between monocyte-derived 

macrophages and monocytes from ZZ patients compared to MM controls.  Furthermore, 

these ZZ cells also do not secrete higher cytokine levels, and α1-antitrypsin polymers were 

not detectable by ELISA.  These data suggest that monocyte-derived macrophages are not 

the local source of Z α1-antitrypsin polymers found in the lung and that ER stress and pro-

inflammatory cytokine release is not altered. 



3 

 

Introduction 

Alpha1-antitrypsin is an important serine proteinase inhibitor (serpin) that protects 

lung tissue from the destructive effects of serine proteases such as neutrophil elastase, 

proteinase 3 and cathepsin G that are released by degranulating neutrophils.  Moreover, α1-

antitrypsin is thought to display anti-inflammatory activity including cytokine inhibition [1-3], 

inhibition of ERK1/2 [4] and regulation of CD14 expression [5].  Although α1-antitrypsin is 

primarily synthesized in the liver, we and others have shown that it can also be produced 

locally by lung epithelial cells, alveolar macrophages and dendritic cells [4, 6-8].  

 The Z mutation (E342K) of α1-antitrypsin comprises more than 95% of the mutations 

leading to severe α1-antitrypsin deficiency.  Due to this mutation, the Z α1-antitrypsin is not 

properly folded, which leads to the formation of polymers that accumulate as PAS positive 

inclusions within the endoplasmic reticulum (ER) of hepatocytes [9].  This toxic gain-of-

function within the liver causes hepatic cirrhosis and the concomitant plasma deficiency 

causes a protease-antiprotease imbalance within the lung and hence early-onset lung 

emphysema [10].  Polymers of Z α1-antitrypsin were identified in lung lavage [11, 12] and 

shown to have pro-inflammatory properties that may exacerbate inflammation and lung 

damage [11, 13-15], particularly in the cigarette smoking Z α1-antitrypsin homozygote.  In 

2004, Mulgrew et al. [15] showed that Z α1-antitrypsin polymers could still be detected in 

lung lavage ten years after liver transplantation, suggesting local secretion and 

polymerisation of Z α1-antitrypsin within the lung.  However, even after a decade, the source 

of these polymers remains unclear. 

The ER is the site of secretory and membrane protein folding and its quality control 

systems ensure that only properly folded proteins exit the organelle for secretion or 

integration into the cell membrane.  Accumulation of unfolded or misfolded proteins in the 

ER induces “ER stress”, thereby activating intracellular signal transduction pathways 

collectively called the unfolded protein response (UPR) (reviewed by Marciniak and Ron 

[16]).  The aim of this complex cellular response is to maintain ER homeostasis initially by 
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reducing the influx of newly synthesized proteins into the ER lumen and subsequently by 

enhancing the protein-folding capacity of the ER.  Cells also increase expression of proteins 

of the ER associated degradation (ERAD) pathway to remove terminally misfolded proteins 

[17].  Furthermore, the UPR not only orchestrates ER homeostasis, it has also be shown to 

be involved in ER stress-induced NF-κB activation [18].  For example, X-box binding protein 

1 (XBP1), a key modulator of the UPR, has been shown to control the production of 

interleukin (IL)-6 and interferon (IFN)-β in B cells and macrophages, respectively [19, 20]. 

Misfolded monomeric Z α1-antitrypsin is predominantly degraded by ERAD whilst 

polymers are cleared by autophagy [21, 22].  Interestingly, this does not activate the UPR 

within cells overexpressing Z α1-antitrypsin [23-25].  However, it does prime cells to an 

exaggerated ER stress response upon a ‘second hit’, probably due to the impaired protein 

mobility within the ER caused by α1-antitrypsin polymers [25].  In addition to the enhanced 

sensitivity to ER stress, cells expressing Z α1-antitrypsin also display an augmented NF-κB 

response with subsequent increase in cytokine secretion [4, 23, 24, 26].  Upon a second hit, 

such as exposure to lipopolysaccharide (LPS) or tumour necrosis factor (TNF)α, this 

inflammatory response is further increased [4, 26].   

Peripheral blood monocytes are the precursors for various subsets of lung 

macrophages, including alveolar macrophages, which are increased in chronic lung 

diseases such as COPD [27] and are associated with the pathogenesis and disease severity 

of this condition [28].  In the healthy lung, alveolar macrophages have been shown to be 

immunosuppressive with poor antigen-presenting capacities, but different macrophage 

phenotypes can develop when monocytes are exposed to different (micro-)environmental 

signals (reviewed in [29, 30]).  Based largely on in vitro studies into development of human 

monocytes-derived macrophages, distinct macrophage subpopulations have been identified.  

For instance, human monocytes exposed to GM-CSF will activate the classical pathway of 

macrophage differentiation, resulting in pro-inflammatory mφ-1 macrophages releasing pro-

inflammatory cytokines and promoting a T-helper 1 response [31].  On the other side of the 
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spectrum, the anti-inflammatory mφ-2 macrophages (also called alternatively activated 

macrophages), can be derived from human monocytes exposed to M-CSF, and are 

characterised by the production of IL-10, the induction of T regulatory cells and the 

phagocytosis of apoptotic cells [32, 33].  However, recent studies have shown altered 

alveolar macrophage polarisation with an “intermediate phenotype” and impaired 

phagocytosis in COPD patients (reviewed in [34]). 

Carroll et al. [26] previously showed intracellular accumulation of α1-antitrypsin and 

subsequent activation of the UPR in monocytes from homozygous Z α1-antitrypsin deficiency 

patients.  Since we have shown previously differential α1-antitrypsin production by different 

macrophage subsets [8], we set out to test the hypothesis that mφ-1 macrophages are able 

to produce Z α1-antitrypsin polymers.  Furthermore, we hypothesized that this subset 

contributes to the enhanced inflammation due to the activation of the UPR, and due to an 

increased NF-κB activation.  
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Material and methods 

Subjects 

The ZZ α1-antitrypsin deficiency patients were stable without any sign of an exacerbation.   

Patient characteristics of these patients can be found in Table 1.  Control MM subjects were 

asymptomatic without evidence of any disease or a (family) history of respiratory disease 

and/or allergy.  They were aged-matched to the ZZ patients, non-smokers and all had a MM 

genotype as confirmed by reverse transcription polymerase chain reaction (RT-PCR; [35]).  

Individuals gave written informed consent to take part in this study, as approved by the 

Medical Ethical Committee of Leiden University Medical Centre, Leiden, the Netherlands. 

 

Cell culture 

Monocytes were isolated from fresh blood and differentiated into  mφ-1 or mφ-2 as 

described previously [8] or used directly as monocytes. Monocytes and monocyte-derived 

macrophages were pre-incubated with 100 nM thapsigargin (Sigma-Aldrich, St. Louis, MO, 

USA) for 1 hour and stimulated with 100 ng/ml Pseudomonas aeruginosa LPS (Sigma) for 4 

or 24 hours as indicated.  We observed no reduction in cell viability after 24 hours of 

thapsigargin treatment compared to control-treated cells by trypan blue exclusion (data not 

shown). 

 

ELISA 

Total and polymerised α1-antitrypsin were measured in cell supernatant by ELISA as 

described previously [36] and expressed per mg of whole cell lysate to correct for differences 

in cell number and/or lysate.  Intracellular levels were determined using whole cell lysate.  

Limit of detection for polymers was 3.0 ng/mg total lysate.  Interleukin (IL)-8, IL-10 and 

IL12p40 was measured as described previously [4, 8]. 

 

Western blot analysis 
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Western blot analysis was performed as described previously [4].  Briefly, samples were 

separated on a 10% w/v acrylamide SDS-PAGE gel.  Proteins were detected with specific 

primary antibodies to phospho-ERK1/2, total ERK1/2, and GAPDH (all Cell Signaling 

Technology, Beverly, MA, USA).  GRP78 and GRP94 were visualised by using a monoclonal 

antibody against the KDEL-sequence (Enzo Life Sciences, Raamsdonksveer, the 

Netherlands).  Although monocytes were seeded in the same density as monocyte-derived 

macrophages, the protein content of monocytes was too low to perform western blot 

analysis.   

 

Quantitative RT-PCR (qPCR) 

RNA was isolated using Maxwell RNA extraction (Promega, Madison, WI, USA) according to 

manufacturer’s instructions.  Quantitative PCR was performed as described [37] with the 

primer pairs as described in Table 2.   

  

Statistical analysis 

Results are expressed as individual donors (each dot is one donor), unless otherwise stated.  

Data were analysed using GraphPad Prism 6.0 software (GraphPad Software, San Diego, 

CA, USA) and compared with two-way repeated measurements analysis of variance 

(ANOVA) and Bonferroni post-hoc analysis.  Differences were considered statistically 

significant with P-values < 0.05. 
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Results  

 

Monocytes and monocyte-derived macrophages experiencing ER stress display an 

exaggerated response upon LPS 

 Thapsigargin inhibits the sarcoendoplasmic reticulum calcium ATPase, thereby 

releasing the Ca2+ stores from the ER and inducing the UPR and activation of NF-κB [38, 

39].  To confirm that low-grade ER stress can lead to an exaggerated UPR upon a second 

hit in monocytes and monocytes-derived macrophages, we pre-treated these cells isolated 

from MM donors with thapsigargin for 1h, and subsequent stimulation with LPS for 4 or 24 

hours.  As expected, thapsigargin significantly increased CHOP, GRP78 mRNA and the 

splicing of XBP1 mRNA, in all cell types at both 4 hours and 24 hours (figure 1A-D). In 

contrast, GADD34 mRNA levels remained unchanged. This response was slower in 

monocytes compared to both mφ-1 and mφ-2, since the levels of CHOP and spliced XBP1 

mRNA were significantly lower at 4 hours, and significantly higher at 24 hours (p<0.01; figure 

1A-B).  LPS induced considerably higher levels of all four UPR genes in mφ-1 and mφ-2 at 

either 4 hours (for spliced XBP1 and GRP78 mRNA) or 24 hours (for CHOP and GADD34 

mRNA).   

 Next, we verified whether this increased ER stress response was accompanied by an 

increase in NF-κB response.  Basal levels of IκB, cFos and IL8 mRNA were significantly 

higher in monocytes compared to both mφ-1 and mφ-2 (figure 2A).  LPS significantly 

increased IκB and IL8 mRNA in monocytes at 4 hours, but not in mφ-1 or mφ-2.  

Remarkably, mφ-1 and mφ-2 experiencing ER stress did show enhanced IκB mRNA levels 

after 4 hours of LPS treatment (p<0.001), whereas in monocytes this level actually 

decreased (p<0.05; figure 2A).  After 24 hours no differences were observed anymore. 

To conclude, these data demonstrate that monocyte-derived macrophages display 

an exaggerated ER stress response and NF-κB response upon a second hit when 

experiencing ER stress, a phenomenon not observed in monocytes. 
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Monocytes and monocyte-derived macrophages from ZZ patients lack the production 

of detectable polymers 

 It has been known for a long time that monocytes [40] and (monocyte-derived) 

macrophages produce α1-antitrypsin [8, 41].  However, it remains unknown whether 

macrophages from Z α1-antitrypsin patients (ZZ cells) are a source of Z α1-antitrypsin 

polymers found in the lung and experience an exaggerated ER stress response.  Therefore, 

we first confirmed our previous findings [8] that pro-inflammatory mφ-1 macrophages secrete 

significantly more α1-antitrypsin compared to anti-inflammatory mφ-2 macrophages in both 

MM and ZZ cells (p<0.001; Figure 3A).  As expected, the levels of α1-antitrypsin in the cell 

supernatant of MM cells were up to five times higher compared to the supernatant of ZZ 

cells.  This could only in part be explained by the intracellular retention of Z α1-antitrypsin 

(Figure 3B) and was not caused by a lack of SERPINA1 mRNA, which encodes α1-

antitrypsin (Figure 3C).  The production of α1-antitrypsin in both mφ-1 and mφ-2 was 

increased after 24 hours LPS treatment (p<0.05 and p<0.01, respectively; Figure 3A and B).  

When we used the 2C1 monoclonal antibody to specifically detect naturally occurring α1-

antitrypsin polymers, we were unable to detect Z α1-antitrypsin polymers in any cell type 

(Figure 3A and B), whereas liver homogenate from a cirrhotic ZZ liver revealed accumulation 

of Z polymers (data not shown).  To verify whether this was due to their differentiation, we 

evaluated the total α1-antitrypsin and polymer production of monocytes from the same 

donors.  Unstimulated monocytes released equal amounts of total α1-antitrypsin measured in 

the cell supernatant compared to mφ-2 (Figure 3A), and did not significantly up-regulate the 

total α1-antitrypsin production after LPS treatment.  Interestingly, the intracellular α1-

antitrypsin levels were significantly higher in both MM as ZZ monocytes compared to pro- or 

anti-inflammatory macrophages (Figure 3B).  However, the polymer levels were 

undetectable in both the cell supernatant and whole cell lysate of ZZ monocytes (Figure 3A 

and B). 
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No evidence for the activation of the unfolded protein response in ZZ monocytes and 

monocyte-derived macrophages 

It has been shown that the overexpression of Z α1-antitrypsin to levels that cause its 

polymerisation leads to an exaggerated ER stress response upon a second hit [24, 25], 

whereas the presence of monomeric Z α1-antitrypsin alone does not trigger the UPR in 

primary bronchial epithelial cells [4].  Carroll et al. [26] showed a slightly enhanced UPR in 

resting ZZ monocytes in the presence of intracellular accumulated Z α1-antitrypsin.  

However, the conformation of this retained Z α1-antitrypsin remained unclear.  Therefore, to 

examine whether our ZZ monocytes and ZZ monocyte-derived macrophages experience 

increased ER stress, we investigated the expression of several UPR target genes; CHOP, 

GADD34 and GRP78 and the splicing of XBP1 mRNA.  In resting cells, there was no 

evidence of an increased ER stress response in ZZ cells compared to MM cells (Figure 4A 

and B).  In addition, beside basal GADD34 mRNA levels, which were elevated in monocytes, 

there was no significant difference in the basal expression of most UPR genes between 

monocytes, mφ-1 and mφ-2, indicating that the differentiation of monocytes into 

macrophages does not alter the stress status (Figure 1A-D and Figure 4A-B).  Next, to 

investigate the influence of an enhanced α1-antitrypsin production, these cells were 

stimulated with LPS.  After 24 hours, mφ-2 from Z α1-antitrypsin patients showed a 

significant increase in GADD34 mRNA (Figure 4A).  However, this difference could not be 

detected in monocytes (Figure 4B).  In line with previous research [42, 43], LPS significantly 

increased CHOP and GADD34 mRNA levels and the splicing of XBP1 mRNA.   

When we assessed GRP78 protein levels by western blot, we were unable to detect 

its increase in mφ-2 (Figure 4C).  In fact, these levels appeared to be lower in ZZ 

macrophages compared to MM macrophages (Figure 4C).    

 

Production of Z α1-antitrypsin in monocyte-derived macrophages does not alter NF-κB 

signalling 
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 We and others [4, 23, 44] have shown that the presence of monomeric Z α1-

antitrypsin is associated with an enhanced NF-κB response in epithelial cells, even in the 

absence of polymers and an exaggerated ER stress response.  However, so far the data for 

monocytes are inconsistent [26, 45] and data for macrophages are lacking.  Therefore, we 

first measured the release of IL-12p40, IL-10 and IL-8 with or without LPS treatment.  As 

shown previously and confirming the appropriate differentiation of the macrophage-subsets 

[31, 46], mφ-1 produced more IL-12p40 compared to mφ-2 after 24 hours of LPS, whereas 

mφ-2 produced more IL-10 (figure 5A).  There was no difference in their IL-8 release.  

However, in contrast to our expectations, MM macrophages produced enhanced levels of all 

three cytokines compared with ZZ macrophages after 24 hours LPS (p<0.01; figure 5A).  

There were no significant differences observed for all cytokines between resting MM and ZZ 

cells.   

 To verify whether this difference in cytokine release was caused by an increased NF-

κB or ERK1/2 signalling, we measured IκB and cFos mRNA (figure 5B) and phosphorylation 

of ERK1/2 (figure 5C).  We were unable to detect any difference, either basally or after 24 

hours of LPS, in IκB and cFos mRNA or phosphorylation of ERK1/2 between MM and ZZ 

macrophages.  However, mφ-2 showed higher levels of ERK1/2 phosphorylation in resting 

cells compared to mφ-1 (figure 5C).   

 Once again, to ensure that the differentiation of monocytes into macrophages did not 

influence our results, we determined IκB and cFos mRNA and the release of IL-8 (figure 5D).  

IκB mRNA was higher in MM monocytes compared to ZZ monocytes.  Although not 

significant, this was also observed for IL-8 in the cell supernatant (figure 5D).  These results 

indicate that the differentiation of monocytes into macrophages does not alter the behaviour 

of either MM or ZZ cells concerning the parameters measured. 
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Discussion 

 After the discovery of Z α1-antitrypsin polymers in the lung lavage of a ZZ α1-

antitrypsin deficiency patient who underwent a liver transplantation ten years before [15], the 

search for the responsible cell type emerged.  We have shown recently that primary 

bronchial epithelial cells of ZZ α1-antitrypsin deficiency patients are unlikely to be the source 

of polymers [4].  In this study, polymers were also not detectable in both monocytes and 

monocyte-derived macrophages from ZZ patients.  Furthermore, we show that these cells do 

not show an exaggerated ER stress nor an increased NF-κB response to a second trigger 

such as LPS.   

  Interestingly, we have recently shown that resting ZZ α1-antitrypsin primary bronchial 

epithelial cells display increased NF-κB activation even in the absence of detectable 

polymers and without an exaggerated ER stress response [4].  This enhanced NF-κB 

response in these cells was explained by the inability to produce significant amounts of Z α1-

antitrypsin by these cells to inhibit ERK1/2 phosphorylation via the epidermal growth factor 

receptor (EGFR) [4].  Monocytes are reported to lack substantial EGFR expression [47], 

which may explain why we were unable to detect this increased NF-κB response in ZZ 

monocytes and monocyte-derived macrophages.  This is in line with Aldonyte et al. [45], who 

showed lower TNFα release by ZZ monocytes.  On the other hand, Carroll et al. [26] 

performed a similar study comparing monocytes isolated from peripheral blood from MM and 

ZZ individuals, where they did find a difference in the release of IL-6, IL-8 and IL-10. We 

cannot exclude that differences in handling and isolation of monocytes between our study 

and that of Carroll et al. explains the different results.  The increase in cytokine release 

found by Carroll et al. was accompanied by the accumulation of Z α1-antitrypsin within the 

ER of unknown conformation, and an exaggerated ER stress response.  We also detected 

the intracellular retention of Z α1-antitrypsin (figure 3A-B), since the ratio of α1-antitrypsin in 

the whole cell lysate and the supernatant was higher in ZZ (up to 3.5 to 1) compared to MM 

cells (up to 1 to 1).  It needs to be noted that these ratios may not be accurate especially for 
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ZZ cells, since the α1-antitrypsin levels measured were close to the limit of detection of the 

ELISA.  Although we obtained preliminary evidence for increased retention of α1-antitrypsin 

in ZZ cells, this does not fully explain the difference in secreted α1-antitrypsin between MM 

and ZZ cells.  This conclusion is based on the observation that the total amount of α1-

antitrypsin produced (sum of whole cell lysates and supernatant) is lower in ZZ than MM 

cells (data not shown).  It would be interesting to investigate whether the remaining 

difference between MM and ZZ cells can be explained by degradation of Z α1-antitrypsin via 

ERAD by treating these cells with a proteasome inhibitor.    

Previously, we have determined the critical Z concentration at which Z α1-antitrypsin 

is likely to form polymers, namely 300 ng/mg total lysate protein [4].  In this study, 

monocytes and monocyte-derived macrophages did not reach this concentration (maximum 

of 30 ng/mg total lysate protein by MM cells), which could explain why we were unable to 

detect 2C1-positive polymers intracellular or in their cell supernatant.  It is noteworthy that 

this critical Z concentration has been established in different epithelial cell lines.  Currently, 

we are unable to exclude the possibility that this concentration might be lower in 

mononuclear cell lineages.  We considered the possibility that the 2C1 monoclonal antibody 

used in the present study is less sensitive than the polyclonal ATZ11 antibody used by 

others [48], which could explain our inability to detect Z polymers.  However, when we 

evaluated the binding characteristics of both antibodies, we found that both antibodies bind 

equally well to Z polymers, but the polyclonal antibody ATZ11 also bound to Z monomers 

[36].  Even if very low levels of Z α1-antitrypsin polymer are made within monocytes, it is 

unlikely to affect cellular function as we were unable to detect altered ER stress 

responsiveness as we have done previously for polymer-expressing cells [25]. 

To our knowledge, this is the first study directly comparing monocytes and monocyte-

derived macrophages of ZZ patients and MM controls in response to ER stress and a 

secondary trigger like LPS.  In our opinion, it is important that we have compared these 

subsets, since it not only excludes the possibility that our findings in the monocyte-derived 
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macrophages could have been explained by alterations in their behaviour whilst 

differentiating, it also reveals unknown differences between these subsets in the expression 

of inflammatory markers like cFos and IL8 mRNA and secretion of IL-8, IL-10 and IL-12p40.  

The cellular mechanisms behind these differences and their biological significance are 

important issues to be addressed, but beyond the scope of this study. 

Although monocyte-derived macrophages are in general a good model to study 

macrophage behaviour, we and others have shown previously that these cellular subsets in 

vitro might not always represents alveolar macrophages in vivo [8, 49].  Therefore, 

theoretically it is still possible that alveolar macrophages are a source of polymers within the 

lung in vivo, although the levels secreted by MM alveolar macrophages are comparable with 

monocytes and monocyte-derived macrophages in vitro [8, 41].  However, it needs to be 

noted that marked differences exist in the characteristics of alveolar macrophages between 

patients with and without COPD (reviewed in [34]).  For example, alveolar macrophages 

from COPD patients have been shown to be unable to efficiently ingest microorganisms and 

apoptotic cells. Interestingly, this inability of COPD cells is already present in monocyte-

derived macrophages obtained from peripheral blood of COPD patients.  This not only 

validates the use of these cells in vitro, it also illustrates the complexity of defining the 

ultimate alveolar macrophage phenotype.  Future studies with alveolar macrophages 

obtained from broncho-alveolar lavage of Z α1-antitrypsin deficiency patients will help to 

better understand the role of macrophages in Z α1-antitrypsin deficiency in vivo. 

Taken together, this study extends our understanding of the current view of Z α1-

antitrypsin polymerisation, exaggerated ER stress response and NF-κB signalling by all cell 

types expressing Z α1-antitrypsin.  However, more research needs to be done to completely 

understand the underlying mechanisms for these phenomena.   
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Figure legends 
 
 

Figure 1.  ER stress response upon LPS treatment in MM monocytes and MM 

monocyte-derived macrophages experiencing ER stress.  A. Monocytes (mono), and 

macrophages type I (mφ-1) and type II (mφ-2) were pre-incubated with thapsigargin (Tg) for 

1 hour followed by LPS treatment for 4 hours (left) or 24 hours (right) as indicated.  The 

splicing of XBP1 mRNA was measured with quantitative RT-PCR, normalised to ATP5B and 

ACTB mRNA.  B-D. Cells were treated as in A and CHOP, GADD34 and GRP78 mRNA was 

measured, respectively.  All values are normalised to the housekeeping genes ACTB and 

ATP5B.  *p<0.05, **p<0.01, ***p<0.001 versus untreated with a two-way repeated-

measurements ANOVA (Bonferroni post-hoc). 

 

Figure 2.  Inflammatory response upon LPS treatment in MM monocytes and MM 

monocyte-derived macrophages experiencing ER stress.  A. Cells were treated as in 

figure 1 and IkB,  cFos and IL8 mRNA was measured.  B. Pre-incubated cells with 

thapsigargin (Tg; 1 hour) were subjected to 24 hours LPS treatment and IL-10, IL-12p40 and 

IL-8 cytokine release were measured in cell supernatant by ELISA.  All mRNA values are 

normalised to the housekeeping genes ACTB and ATP5B.  *p<0.05, **p<0.01, ***p<0.001 

versus untreated with a two-way repeated-measurements ANOVA (Bonferroni post-hoc). 
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Figure 3. Alpha1-antitrypsin production by monocyte-derived macrophages from ZZ 

patients and MM controls.  A. Total α1-antitrypsin and α1-antitrypsin polymer production 

measured in cell supernatant of monocytes (mono), and macrophages type I (mφ-1) and 

type II (mφ-2) after 24 hours LPS treatment.  B. As in A.  Total α1-antitrypsin and α1-

antitrypsin polymer levels in whole cell lysates.  C. Cells were treated as in A. and 

SERPINA1 mRNA was measured.  All mRNA values are normalised to the housekeeping 

genes ACTB and ATP5B.  *p<0.05, **p<0.01, ***p<0.001 versus untreated with a two-way 

repeated-measurements ANOVA (Bonferroni post-hoc). 

 

Figure 4. No exaggerated ER stress response in monocytes and monocyte-derived 

macrophages from ZZ patients compared to MM controls.  A. mRNA levels in 

macrophages type I (mφ-1) and type II (mφ-2) of the ER stress genes spliced XBP1, CHOP, 

GADD34 and GRP78 after 24 hours LPS treatment measured by quantitative RT-PCR.  B. 

Monocytes were treated and subjected to analysis as in A.  C. Representative western blot 

for GRP94 and GRP78 using anti-KDEL antibody.  Monocyte-derived macrophages were 

treated as in A.  Densitometry of n=4.  All mRNA values are normalised to the housekeeping 

genes ACTB and ATP5B.  *p<0.05, **p<0.01, ***p<0.001 versus untreated with a two-way 

repeated-measurements ANOVA (Bonferroni post-hoc). 

 

Figure 5. No increased inflammatory response in monocytes and monocyte-derived 

macrophages from ZZ patients compared to MM controls.  A. IL-8, IL-10 and IL-12p40 

release of macrophages type I (mφ-1) and type II (mφ-2) after 24 hours LPS treatment 

measured by ELISA.  B. mRNA levels of IkB and cFos in mφ-1 and mφ-2 treated as in A.  C. 

Representative western blot of the activation of the MAP kinases ERK1/2 of whole cell 

lysates from mφ-1 and mφ-2 treated as in A.  Densitometry of n=4.  D. IL-8, IL-10 and IL-

12p40 release of monocytes treated as in A.  All mRNA values are normalised to the 
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housekeeping genes ACTB and ATP5B.  *p<0.05, **p<0.01, ***p<0.001 versus untreated 

with a two-way repeated-measurements ANOVA (Bonferroni post-hoc). 
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Table 1. Patient characteristics 

 PiZZ patients (n=7) 
age (mean, range) 52 (43-57) 
sex (M/F) 3/3 
FEV1 (mean, range in %) 50 (33-84) 
FEV1/FVC (mean, range in %) 38 (28-65) 
Smoking status (current/ex/never) 0/2/5 
 
 
Table 2. qPCR primers 
 

Name Forward primer Reverse primer 
Melting  
temp. 
(°C) 

Ref. 

CHOP 5′ GCA CCT CCC AGA GCC CTC ACT CTC C 3′ 5′ GTC TAC TCC AAG CCT TCC CCC TGC G 3′ 62 [37] 

GADD34 5’ ATG TAT GGT GAG CGA GAG GC 3’ 5’ GCA GTG TCC TTA TCA GAA GGC 3’ 62 [50] 

IL8 5’ CTG GAC CCC AAG GAA AAC 3’ 5’ TGG CAA CCC TAC AAC AGA C 3’ 60 - 

SERPINA1 5’ AAG GCA AAT GGG AGA GAC CC 3’ 5’ AAG AAG ATG GCG GTG GCA T 3’ 60 [8] 

XBP1s 5′ TGC TGA GTC CGC AGC AGG TG 3′ 5′ GCT GGC AGG CTC TGG GGA AG 3′ 62 [37] 
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