55 research outputs found

    HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maraviroc (MVC) and other CCR5 antagonists are HIV-1 entry inhibitors that bind to- and alter the conformation of CCR5, such that CCR5 is no longer recognized by the viral gp120 envelope (Env) glycoproteins. Resistance to CCR5 antagonists results from HIV-1 Env acquiring the ability to utilize the drug-bound conformation of CCR5. Selecting for HIV-1 resistance to CCR5-antagonists <it>in vitro </it>is relatively difficult. However, the CCR5-using CC1/85 strain appears to be uniquely predisposed to acquiring resistance to several CCR5 antagonists <it>in vitro </it>including MVC, vicriviroc and AD101.</p> <p>Findings</p> <p>Here, we show that Env derived from the parental CC1/85 strain is inherently capable of a low affinity interaction with MVC-bound CCR5. However, this phenotype was only revealed in 293-Affinofile cells and NP2-CD4/CCR5 cells that express very high levels of CCR5, and was masked in TZM-bl, JC53 and U87-CD4/CCR5 cells as well as PBMC, which express comparatively lower levels of CCR5 and which are more commonly used to detect resistance to CCR5 antagonists.</p> <p>Conclusions</p> <p>Env derived from the CC1/85 strain of HIV-1 is inherently capable of a low-affinity interaction with MVC-bound CCR5, which helps explain the relative ease in which CC1/85 can acquire resistance to CCR5 antagonists <it>in vitro</it>. The detection of similar phenotypes in patients may identify those who could be at higher risk of virological failure on MVC.</p

    Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CCR5-restricted (R5) human immunodeficiency virus type 1 (HIV-1) variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env) determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA) and AIDS (A) R5 Envs, respectively.</p> <p>Results</p> <p>Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362), a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs) residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure.</p> <p>Conclusion</p> <p>Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.</p

    PGE<sub>2</sub> production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo

    Get PDF
    Neutrophils are the first immune cells recruited to a site of injury or infection, where they perform many functions. Having completed their role, neutrophils must be removed from the inflammatory site—either by apoptosis and efferocytosis or by reverse migration away from the wound—for restoration of normal tissue homeostasis. Disruption of these tightly controlled physiological processes of neutrophil removal can lead to a range of inflammatory diseases. We used an in vivo zebrafish model to understand the role of lipid mediator production in neutrophil removal. Following tailfin amputation in the absence of macrophages, neutrophillic inflammation does not resolve, due to loss of macrophage-dependent handling of eicosanoid prostaglandin E2 (PGE2) that drives neutrophil removal via promotion of reverse migration. Knockdown of endogenous PGE synthase gene reveals PGE2 as essential for neutrophil inflammation resolution. Furthermore, PGE2 is able to signal through EP4 receptors during injury, causing an increase in Alox12 production and switching toward anti-inflammatory eicosanoid signaling. Our data confirm regulation of neutrophil migration by PGE2 and LXA4 (lipoxin A4) in an in vivo model of inflammation resolution. This pathway may contain therapeutic targets for driving inflammation resolution in chronic inflammatory disease

    Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro

    Get PDF
    Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens

    A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA

    Get PDF
    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late ‘point of no return’ step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR’s advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR’s utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science

    HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles

    Get PDF
    Astrocytes are extensively infected with HIV-1 in vivo and play a significant role in the development of HIV-1-associated neurocognitive disorders. Despite their extensive infection, little is known about how astrocytes become infected, since they lack cell surface CD4 expression. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. Astrocytes were found to bind and harbor virus followed by biphasic decay, with HIV-1 detectable out to 72 hours. HIV-1 was observed to associate with CD81-lined vesicle structures. shRNA silencing of CD81 resulted in less cell-associated virus but no loss of co-localization between HIV-1 and CD81. Astrocytes supported trans-infection of HIV-1 to T-cells without de novo virus production, and the virus-containing compartment required 37uC to form, and was trypsin-resistant. The CD81 compartment observed herein, has been shown in other cell types to be a relatively protective compartment. Within astrocytes, this compartment may be actively involved in virus entry and/or spread. The ability of astrocytes to transfer virus, without de novo viral synthesis suggests they are capable of sequestering and protecting virus and thus, they could potentially facilitate viral dissemination in the CN

    The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes

    Get PDF
    HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens
    corecore