23 research outputs found

    Translating the Game: Ribosomes as Active Players

    Get PDF
    Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators

    MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state

    Get PDF
    Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers

    SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention

    Get PDF
    Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease

    Differential Cytokine Pattern in the Spleens and Livers of BALB/c Mice Infected with Penicillium marneffei: Protective Role of Gamma Interferon

    No full text
    Penicillium marneffei is an intracellular opportunistic fungus causing invasive mycosis in AIDS patients. T cells and macrophages are important for protection in vivo. However, the role of T-cell cytokines in the immune response against P. marneffei is still unknown. We studied by semiquantitative reverse transcription-PCR and biological assays the patterns of expression of Th1 and Th2 cytokines in the organs of wild-type (wt) and gamma interferon (IFN-γ) knockout (GKO) mice infected intravenously with P. marneffei conidia. At 3 × 10(5) conidia/mouse, a self-limiting infection developed in wt BALB/c mice, whereas all GKO mice died at day 18 postinoculation. Splenic and hepatic granulomas were present in wt mice, whereas disorganized masses of macrophages and yeast cells were detected in GKO mice. The infection resolved faster in the spleens than in the livers of wt mice and was associated with the local expression of type 1 cytokines (high levels of interleukin-12 [IL-12] and IFN-γ) but not type 2 cytokines (low levels of IL-4 and IL-10). Conversely, both type 1 and type 2 cytokines were detected in the livers of wt animals. Disregulation of the cytokine profile was seen in the spleens but not in the livers of GKO mice. The inducible nitric oxide synthase mRNA level was low and the TNF-α level was high in both spleens and livers of GKO mice compared to wt mice. These data suggest that the polarization of a protective type 1 immune response against P. marneffei is regulated at the level of individual organs and that the absence of IFN-γ is crucial for the activation of fungicidal macrophages and the development of granulomas

    Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation

    No full text
    Eukaryotic ribosome biogenesis and translation are linked processes that limit the rate of cell growth. Although ribosome biogenesis and translation are mainly controlled by distinct factors, eukaryotic initiation factor 6 (eIF6) has been found to regulate both processes. eIF6 is a necessary protein with a unique anti-association activity, which prevents the interaction of 40S ribosomal subunits with 60S subunits through its binding to 60S ribosomes. In the nucleolus, eIF6 is a component of the pre-ribosomal particles and is required for the biogenesis of 60S subunits, whereas in the cytoplasm it mediates translation downstream from growth factors. The translational activity of eIF6 could be due to its anti-association properties, which are regulated by post-translational modifications; whether this anti-association activity is required for the biogenesis and nuclear export of ribosomes is unknown. eIF6 is necessary for tissue-specific growth and oncogene-driven transformation, and could be a new rate-limiting step for the initiation of translation

    Inhibition of eIF6 Activity Reduces Hepatocellular Carcinoma Growth: An In Vivo and In Vitro Study

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids in the liver. Given the high prevalence of NAFLD, its evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) is of global concern. Therapies for managing NASH-driven HCC can benefit from targeting factors that play a continuous role in NAFLD evolution to HCC. Recent work has shown that postprandial liver translation exacerbates lipid accumulation through the activity of a translation factor, eukaryotic initiation factor 6 (eIF6). Here, we test the effect of eIF6 inhibition on the progression of HCC. Mice heterozygous for eIF6 express half the level of eIF6 compared to wt mice and are resistant to the formation of HCC nodules upon exposure to a high fat/high sugar diet combined with liver damage. Histology showed that nodules in eIF6 het mice were smaller with reduced proliferation compared to wt nodules. By using an in vitro model of human HCC, we confirm that eIF6 depletion reduces the growth of HCC spheroids. We also tested three pharmacological inhibitors of eIF6 activity—eIFsixty-1, eIFsixty-4, and eIFsixty-6—and all three reduced eIF6 binding to 60S ribosomes and limited the growth of HCC spheroids. Thus, inhibition of eIF6 activity is feasible and limits HCC formation

    The Impact of 3D Nichoids and Matrix Stiffness on Primary Malignant Mesothelioma Cells

    No full text
    Malignant mesothelioma is a type of cancer that affects the mesothelium. It is an aggressive and deadly form of cancer that is often caused by exposure to asbestos. At the molecular level, it is characterized by a low number of genetic mutations and high heterogeneity among patients. In this work, we analyzed the plasticity of gene expression of primary mesothelial cancer cells by comparing their properties on 2D versus 3D surfaces. First, we derived from primary human samples four independent primary cancer cells. Then, we used Nichoids, which are micro-engineered 3D substrates, as three-dimensional structures. Nichoids limit the dimension of adhering cells during expansion by counteracting cell migration between adjacent units of a substrate with their microarchitecture. Tumor cells grow effectively on Nichoids, where they show enhanced proliferation. We performed RNAseq analyses on all the samples and compared the gene expression pattern of Nichoid-grown tumor cells to that of cells grown in a 2D culture. The PCA analysis showed that 3D samples were more transcriptionally similar compared to the 2D ones. The 3D Nichoids induced a transcriptional remodeling that affected mainly genes involved in extracellular matrix assembly. Among these genes responsible for collagen formation, COL1A1 and COL5A1 exhibited elevated expression, suggesting changes in matrix stiffness. Overall, our data show that primary mesothelioma cells can be effectively expanded in Nichoids and that 3D growth affects the cells’ tensegrity or the mechanical stability of their structure
    corecore