5 research outputs found

    Retrospective, controlled observational case study of patients with central retinal vein occlusion and initially low visual acuity treated with an intravitreal dexamethasone implant

    Get PDF
    Background Patients with initially low visual acuity were excluded from the therapy approval studies for retinal vein occlusion. But up to 28 % of patients presenting with central retinal vein occlusion have a baseline BCVA of less than 34 ETDRS letters (0.1). The purpose of our study was to assess visual acuity and central retinal thickness in patients suffering from central retinal vein occlusion and low visual acuity (<0.1) in comparison to patients with visual acuity (≄0.1) treated with Dexamethasone implant 0.7 mg for macular edema. Methods Retrospective, controlled observational case study of 30 eyes with macular edema secondary to central retinal vein occlusion, which were treated with a dexamethasone implantation. Visual acuity, central retinal thickness and intraocular pressure were measured monthly. Analyses were performed separately for eyes with visual acuity <0.1 and ≄0.1. Results Two months post intervention, visual acuity improved only marginally from 0.05 to 0.07 (1 month; p = 0,065) and to 0.08 (2 months; p = 0,2) in patients with low visual acuity as compared to patients with visual acuity ≄0.1 with an improvement from 0.33 to 0.47 (1 month; p = 0,005) and to 0.49 (2 months; p = 0,003). The central retinal thickness, however, was reduced in both groups, falling from 694 to 344 ÎŒm (1 month; p = 0.003,) to 361 ÎŒm (2 months; p = 0,002) and to 415 ÎŒm (3 months; p = 0,004) in the low visual acuity group and from 634 to 315 ÎŒm (1 month; p < 0,001) and to 343 ÎŒm (2 months; p = 0,001) in the visual acuity group ≄0.1. Absence of visual acuity improvement was related to macular ischemia. Conclusions In patients with central retinal vein occlusion and initially low visual acuity, a dexamethasone implantation can lead to an important reduction of central retinal thickness but may be of limited use to increase visual acuity

    Forest tree genomics: 10 achievements from the past 10 years and future prospects

    Get PDF
    This review highlights some of the discoveries and applications made possible by “omics” technologies over the last 10 years and provides perspectives for pioneering research to increase our understanding of tree biology.ContextA decade after the first forest tree genome sequence was released into the public domain, the rapidly evolving genomics and bioinformatics toolbox has advanced our understanding of the structure, functioning, and evolution of forest tree genomes.Aims and methodsThis review highlights some of the discoveries and applications that “omics” technologies have made possible for forest trees over the past 10 years.ResultsIn this review, we start by our current understanding of genome evolution and intricacies of gene regulation for reproduction, development, and responses to biotic and abiotic stresses. We then skim over advances in interactome analysis and epigenomics, the knowledge of the extent of genetic variation within and between species, revealing micro- and macro-evolutionary processes and species history, together with the complex architecture of quantitative traits. We finally end with applications in genetic resource conservation and breeding.ConclusionThe knowledge gained through the use of these technologies has a huge potential impact for adapting forests to the main challenges they will have to face: changing demand from ecosystem services with potentially conflicting strategies in terms of conservation and use, as well as climate changes and associated threats. Genomics will undoubtedly play a major role over the next decade and beyond, not only to further understand the mechanisms underlying adaptation and evolution but also to develop and implement innovative management and policy actions to preserve the adaptability of natural forests and intensively managed plantations
    corecore