165 research outputs found

    Roll-to-Roll Dyed Conducting Silk Yarns: A Versatile Material for E-Textile Devices

    Get PDF
    KGaA, Weinheim Textiles are a promising base material for flexible and wearable electronic applications such as sensors, actuators, and energy harvesters. An essential component in such electronic textiles (e-textiles) is electrically conducting yarns. Here, a continuous dyeing process is presented to convert an off-the-shelf silk sewing thread into a wash and wear resistant functional thread with a conductivity of about 70 S cm−1; a record high value for coated yarns. An aqueous ink based on the conducting polymer:polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is modified, to produce more than 100 m of dyed conducting threads, which are subsequently converted into e-textiles by both hand weaving and machine embroidery. The yarns are resistant to abrasion and wear, and can be machine washed at least 15 times with retained electronic properties. The woven fabric is used to design a capacitive touch sensor which functions as an e-textile keyboard

    Robust PEDOT:PSS Wet‐Spun Fibers for Thermoelectric Textiles

    Get PDF
    To realize thermoelectric textiles that can convert body heat to electricity, fibers with excellent mechanical and thermoelectric properties are needed. Although poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is among the most promising organic thermoelectric materials, reports that explore its use for thermoelectric fibers are all but absent. Herein, the mechanical and thermoelectric properties of wet‐spun PEDOT:PSS fibers are reported, and their use in energy‐harvesting textiles is discussed. Wet‐spinning into sulfuric acid results in water‐stable semicrystalline fibers with a Young\u27s modulus of up to 1.9 GPa, an electrical conductivity of 830 S cm−1, and a thermoelectric power factor of 30 μV m−1 K−2. Stretching beyond the yield point as well as repeated tensile deformation and bending leave the electrical properties of these fibers almost unaffected. The mechanical robustness/durability and excellent underwater stability of semicrystalline PEDOT:PSS fibers, combined with a promising thermoelectric performance, opens up their use in practical energy‐harvesting textiles, as illustrated by an embroidered thermoelectric fabric module

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Patient survival and tumor characteristics associated with CHEK2:p.I157T – findings from the Breast Cancer Association Consortium

    Get PDF
    Abstract Background P.I157T is a CHEK2 missense mutation associated with a modest increase in breast cancer risk. Previously, another CHEK2 mutation, the protein truncating c.1100delC has been associated with poor prognosis of breast cancer patients. Here, we have investigated patient survival and characteristics of breast tumors of germ line p.I157T carriers. Methods We included in the analyses 26,801 European female breast cancer patients from 15 studies participating in the Breast Cancer Association Consortium. We analyzed the association between p.I157T and the clinico-pathological breast cancer characteristics by comparing the p.I157T carrier tumors to non-carrier and c.1100delC carrier tumors. Similarly, we investigated the p.I157T associated risk of early death, breast cancer-associated death, distant metastasis, locoregional relapse and second breast cancer using Cox proportional hazards models. Additionally, we explored the p.I157T-associated genomic gene expression profile using data from breast tumors of 183 Finnish female breast cancer patients (ten p.I157T carriers) (GEO: GSE24450). Differential gene expression analysis was performed using a moderated t test. Functional enrichment was investigated using the DAVID functional annotation tool and gene set enrichment analysis (GSEA). The tumors were classified into molecular subtypes according to the St Gallen 2013 criteria and the PAM50 gene expression signature. Results P.I157T was not associated with increased risk of early death, breast cancer-associated death or distant metastasis relapse, and there was a significant difference in prognosis associated with the two CHEK2 mutations, p.I157T and c.1100delC. Furthermore, p.I157T was associated with lobular histological type and clinico-pathological markers of good prognosis, such as ER and PR expression, low TP53 expression and low grade. Gene expression analysis suggested luminal A to be the most common subtype for p.I157T carriers and CDH1 (cadherin 1) target genes to be significantly enriched among genes, whose expression differed between p.I157T and non-carrier tumors. Conclusions Our analyses suggest that there are fundamental differences in breast tumors of CHEK2:p.I157T and c.1100delC carriers. The poor prognosis associated with c.1100delC cannot be generalized to other CHEK2 mutations

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs)

    Get PDF
    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90–0.94; P = 8.96 × 10−15)) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10−09, r2 = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10−11, r2 = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus

    Identification of new genetic susceptibility loci for breast cancer through consideration of gene-environment interactions

    Get PDF
    Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G × E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 × 10(−07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15–1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72–1.11, P for interaction = 3.2 × 10(−05)). Our findings confirm comparable power of the recent methods for detecting G × E interaction and the utility of using G × E interaction analyses to identify new susceptibility loci

    Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression.

    Get PDF
    Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ajhg.2015.05.002

    Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation

    Get PDF
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495–45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13–1.18; p = 8.35 × 10−30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER−) breast cancer (lead SNP rs6864776: per-a allele OR ER− = 1.10; 95% CI 1.05–1.14; p conditional = 1.44 × 10−12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09–1.15; p conditional = 1.12 × 10−05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis
    corecore