5 research outputs found

    Plasmalogens protect unsaturated lipids against UV-induced oxidation in monolayer

    Get PDF
    AbstractOxidative stress results from the attack by free radicals of several cellular targets (proteins, DNA and lipids). The cell equilibrium is a direct consequence of the pro-/antioxidant balance. In order to understand the physiological processes involved in oxidative stress, we followed oxidation of unsaturated lipids using a biomimetic system: Langmuir monolayers. The oxidation mode chosen was UV-irradiation and the lipid model was a polyunsaturated phospholipid: 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC). The monomolecular film technique was used to measure membrane rheology before and after UV-irradiation. We showed that the UV-irradiation of a DLPC monomolecular film led to a molecular area and surface elasticity modulus decrease that attests to the apparition of new molecular species at the air–water interface. The antioxidant effect of a synthetic plasmalogen (1-O-(1′-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycero-3-phosphocholine or PPLMOPE) was tested on the oxidation of DLPC. Indeed, for about 25% mol PPLMOPE in mixed DLPC/PPLMOPE monolayers, a complete inhibition of the molecular area and the surface elasticity modulus decreases was observed in our experimental conditions. Lower PPLMOPE quantities delayed but did not prevent the DLPC oxidation in mixed monolayers

    Rationale and design of the Karolinska-Rennes (KaRen) prospective study of dyssynchrony in heart failure with preserved ejection fraction

    No full text
    International audienceAIMS: Heart failure with preserved ejection fraction (HFPEF) is common but not well understood. Electrical dyssynchrony in systolic heart failure is harmful. Little is known about the prevalence and the prognostic impact of dyssynchrony in HFPEF. METHODS AND RESULTS: We have designed a prospective, multicenter, international, observational study to characterize HFPEF and to determine whether electrical or mechanical dyssynchrony affects prognosis. Patients presenting with acute heart failure (HF) will be screened so as to identify 400 patients with HFPEF. Inclusion criteria will be: acute presentation with Framingham criteria for HF, left ventricular ejection fraction>or=45%, brain natriuretic peptide (BNP)>100 pg/mL or NT-proBNP>300 pg/mL. Once stabilized, 4-8 weeks after the index presentation, patients will return and undergo questionnaires, serology, ECG, and Doppler echocardiography. Thereafter, patients will be followed for mortality and HF hospitalization every 6 months for at least 18 months. Sub-studies will focus on echocardiographic changes from the acute presentation to the stable condition and on exercise echocardiography, cardiopulmonary exercise testing, and serological markers. CONCLUSION: KaRen aims to characterize electrical and mechanical dyssynchrony and to assess its prognostic impact in HFPEF. The results might improve our understanding of HFPEF and generate answers to the question whether dyssynchrony could be a target for therapy in HFPEF

    Verbesserung der Qualität des Basic Life Support bei Studierenden im Praktischen Jahr

    No full text

    2013 ESH/ESC Guidelines for the management of arterial hypertension

    No full text
    Because of new evidence on several diagnostic and therapeutic aspects of hypertension, the present guidelines differ in many respects from the previous ones. Some of the most important differences are listed below: 1. Epidemiological data on hypertension and BP control in Europe. 2. Strengthening of the prognostic value of home blood pressure monitoring (HBPM) and of its role for diagnosis and management of hypertension, next to ambulatory blood pressure monitoring (ABPM). 3. Update of the prognostic significance of night-time BP, white-coat hypertension and masked hypertension. 4. Re-emphasis on integration of BP, cardiovascular (CV) risk factors, asymptomatic organ damage (OD) and clinical complications for total CV risk assessment. 5. Update of the prognostic significance of asymptomatic OD, including heart, blood vessels, kidney, eye and brain. 6. Reconsideration of the risk of overweight and target body mass index (BMI) in hypertension. 7. Hypertension in young people. 8. Initiation of antihypertensive treatment. More evidence-based criteria and no drug treatment of high normal BP. 9. Target BP for treatment. More evidence-based criteria and unified target systolic blood pressure (SBP) (<140 mmHg) in both higher and lower CV risk patients. 10. Liberal approach to initial monotherapy, without any all-ranking purpose. 11. Revised schema for priorital two-drug combinations. 12. New therapeutic algorithms for achieving target BP. 13. Extended section on therapeutic strategies inspecial conditions. 14. Revised recommendations on treatment of hypertensionin the elderly. 15. Drug treatment of octogenarians. 16. Special attention to resistant hypertension and newtreatment approaches. 17. Increased attention to OD-guided therapy. 18. New approaches to chronic management of hypertensive disease

    2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC)

    No full text
    Because of new evidence on several diagnostic and therapeutic aspects of hypertension, the present guidelines differ in many respects from the previous ones. Some of the most important differences are listed below: 1. Epidemiological data on hypertension and BP control in Europe. 2. Strengthening of the prognostic value of home blood pressure monitoring (HBPM) and of its role for diagnosis and management of hypertension, next to ambulatory blood pressure monitoring (ABPM). 3. Update of the prognostic significance of night-time BP, white-coat hypertension and masked hypertension. 4. Re-emphasis on integration of BP, cardiovascular (CV) risk factors, asymptomatic organ damage (OD) and clinical complications for total CV risk assessment. 5. Update of the prognostic significance of asymptomatic OD, including heart, blood vessels, kidney, eye and brain. 6. Reconsideration of the risk of overweight and target body mass index (BMI) in hypertension. 7. Hypertension in young people. 8. Initiation of antihypertensive treatment. More evidence-based criteria and no drug treatment of high normal BP. 9. Target BP for treatment. More evidence-based criteria and unified target systolic blood pressure (SBP) (<140 mmHg) in both higher and lower CV risk patients. 10. Liberal approach to initial monotherapy, without any all-ranking purpose. 11. Revised schema for priorital two-drug combinations. 12. New therapeutic algorithms for achieving target BP. 13. Extended section on therapeutic strategies in special conditions. 14. Revised recommendations on treatment of hypertension in the elderly. 15. Drug treatment of octogenarians. 16. Special attention to resistant hypertension and new treatment approaches. 17. Increased attention to OD-guided therapy. 18. New approaches to chronic management of hypertensive disease
    corecore