Plasmalogens protect unsaturated lipids against UV-induced oxidation in monolayer

Sandrine Morandat a,*, Muriel Bortolato a, Geneviève Anker b, Alain Doutheau c, Michel Lagarde b, Jean-Paul Chauvet d, Bernard Roux a

a Laboratoire de Physico-Chimie Biologique, UMR-CNRS 5013, Bât. E. Chevreul, Université Claude Bernard Lyon I, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
b Laboratoire de Biochimie et Pharmacologie, INSERM U352, Bât. L. Pasteur, INSA de Lyon, 20 Av. A. Einstein, F-69621 Villeurbanne Cedex, France
c Laboratoire de Chimie Organique, UMR-CNRS 5622, Bât. J. Verne, INSA de Lyon, 20 Av. A. Einstein, F-69621 Villeurbanne Cedex, France
d Laboratoire d’Ingenierie et de Fonctionnalisation des Surfaces, UMR-CNRS 5621, Équipe Bioingénierie et Reconnaissance Génétique, Ecole Centrale de Lyon, 36 Av. G. de Collongue, F-69134 Ecully Cedex, France

Received 28 January 2003; received in revised form 11 June 2003; accepted 12 August 2003

Abstract

Oxidative stress results from the attack by free radicals of several cellular targets (proteins, DNA and lipids). The cell equilibrium is a direct consequence of the pro-/antioxidant balance. In order to understand the physiological processes involved in oxidative stress, we followed oxidation of unsaturated lipids using a biomimetic system: Langmuir monolayers. The oxidation mode chosen was UV-irradiation and the lipid model was a polyunsaturated phospholipid: 1,2-dilinoleoylsn-glycero-3-phosphocholine (DLPC). The monomolecular film technique was used to measure membrane rheology before and after UV-irradiation. We showed that the UV-irradiation of a DLPC monomolecular film led to a molecular area and surface elasticity modulus decrease that attests to the apparition of new molecular species at the air–water interface. The antioxidant effect of a synthetic plasmalogen (1-O-(1’-((Z)-hexadecenyl))-2-O-oleoyl-sn-glycero-3-phosphocholine or P PLMOPE) was tested on the oxidation of DLPC. Indeed, for about 25% mol P PLMOPE in mixed DLPC/P PLMOPE monolayers, a complete inhibition of the molecular area and the surface elasticity modulus decreases was observed in our experimental conditions. Lower PPLMOPE quantities delayed but did not prevent the DLPC oxidation in mixed monolayers.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Monolayer; Plasmalogen; UV; Unsaturated lipid oxidation; Antioxidant

1. Introduction

Peroxidative damages of membrane lipids are a common consequence of free radical-mediated chain reaction. In living systems, it is associated with several physiopathological events (e.g. atherosclerosis, cancer, ageing, neurodegenerative diseases,…). These medical consequences of cellular damage have motivated the investigations in the mechanism of lipid peroxidation, but also in the protective role of antioxidants in membrane model systems.

Abbreviations: DLPC, 1,2-dilinoleoylsn-glycero-3-phosphocholine; DLPE, 1,2-dilinoleoylsn-glycero-3-phosphoethanolamine; DMPC, 1,2-dimyristoylsn-glycero-3-phosphocholine; Ks, surface elasticity modulus; POPE, 1-palmitoyl, 2-oleoylsn-glycero-3-phosphoethanolamine; P PLMOPE, 1-O-(1’(Z)-hexadecenyl)-2-O-oleoylsn-glycero-3-phosphocholine

* Corresponding author. Tel.: +33-4-7243-1542; fax: +33-4-7243-1543.
E-mail address: morandat@univ-lyon1.fr (S. Morandat).

Peroxidation of unsaturated acyl residues by ionizing radiation in the presence of oxygen, induces the formation of hydroperoxide and acyl chain cross-linkage [1]. UV light is commonly used in the food industry to reduce microbial growth. But this can affect food quality by inducing photo-oxidation of polyunsaturated fatty acids [2]. Indeed, UV light induces the formation of reactive oxygen species such as superoxide anion, singlet oxygen and peroxyl radicals [3]. An UVC irradiation at 254 nm of a linoleic acid emulsion exhibits the formation of lipid peroxides [2]. The formation of thiobarbituric acid reactive substances (TBARS) is induced by UVA (320–400 nm) as shown in liposomes [4,5] as well as in cultured human skin fibroblasts [6,7].

Different molecules can assume protection against oxidative stress; vitamin E, cholesterol and plasmalogens are some examples [8–10]. Plasmalogens describe a peculiar class of membrane glycerophospholipids that display a unique structural feature: a vinyl-ether linkage at the sn-1 position instead...
of the usual ester linkage. They are widely distributed in animals [11] as well as in certain anaerobic microorganisms. The most abundant form is plasmenylethanolamine. Significant levels of plasmenylcholine were also found especially in cardiac tissue [12].

While the proportion of plasmalogens is relatively high in heart, striated muscle, nervous tissues, and inflammatory and immunological cells, their precise biochemical role in the lipid bilayer has remained elusive for a long time. As they are also linked with certain pathologies and with human genetic disorders, interest for these molecules has been stimulated. Plasmalogens have been suggested as a storage terminal for arachidonic acid [13]. This is oxidized at carbon 5 that are cleaved by the phospholipase A2 according to the five-step Thompson’s sequence [23]. The oxidation of plasmenyl arachidonoyl phospholipids leads to the formation of esterified arachidonate oxidized at carbon 5 that are cleaved by the phospholipase A2 action. These products liberated as free acids are eicosanoids [11]. The oxidation of plasmenyl arachidonoyl phospholipids is mostly concentrated in plasmenylethanolamine [11].

The most abundant form is plasmenylethanolamine. Significantly levels of plasmenylcholine were also found especially in animals [11] as well as in certain anaerobic microorganisms. They are widely distributed in immuno logical cells, their precise biochemical role in the heart, striated muscle, nervous tissues, and inflammatory and immune cells being studied [10]. This promotes membrane–membrane fusions and membrane ion linkages, and this may be important in some biological events as endocytosis and secretion. The hypothesis that plasmalogens act as singlet oxygen quencher is supported by the ability of reactive oxygen species to abstract the hydrogen in α position. As antioxidant, plasmalogens appeared to be a target for oxidative damage [15,16]. Studies on multilamellar liposomes and LDL presented the inhibitory effect of plasmalogens on iron- and copper-dependent lipid peroxidation [17,18] and on AAPH oxidation [16,19].

The aim of our work is to investigate the effect of plasmalogens on the UV-oxidation of a polyunsaturated phospholipid in monolayers. The monolayer technique is a powerful method for studying enzymatic [20] and non-enzymatic reactions [21]. It is possible to get useful molecular information on the behavior of the unsaturated lipids after UV exposure, i.e., to characterize the physical properties of membrane after oxidative stress. The antioxidant role of plasmalogens was often studied with cellular extracts [18], in cells directly [22] or with liposomes [17] but never with monolayers.

2. Materials and methods

2.1. Materials

1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were purchased from Sigma Chemicals (St. Louis, MO, USA). 1,2,3-O-isopropylidene-sn-glycerol was obtained from Aldrich (France). All other chemicals and reagents were of the highest purity available from Merck (Darmstadt, Germany) and from Aldrich. All solvents were of chromatographic grade. The DLPC solution was protected against light and stored in a freezer until spreading. The distilled water was purified with a Millipore MilliQ filtering system, yielding a water resistance of 18.2 MΩ cm.

2.2. Synthesis of the plasmalogen (PPLMOPE)

The PPLMOPE was synthesized as follows. Commercially available 1,2,3-O-isopropylidene-sn-glycerol was acylated with palmitoyl chloride (Pyr., CH₂Cl₂; 95%) to give 1-O-Palmitoyl-2,3-O-isopropylidene-sn-glycerol. The isopropylidene protective group was then removed (MeOH, HCl; 74%) yielding 1-O-palmitoyl-sn-glycerol which was then transformed into 3-O-(tert-butylidylylisilyl)-1-O-(1′-(Z)-hexadecenyl)-sn-glycerol, in about 50% overall yield, according to the five-step Thompson’s sequence [23]. Acylation with oleoyl chloride (Pyr., CH₂Cl₂; 91%) afforded 3-O-(tert-butylidylylisilyl)-1-O-(1′-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycerol. Removal of the tert-butylidylylisilyl group (Bu₄NF/THF; 85%) led to 1-O-(1′-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycerol which was reacted with 2-azidoethyl dichlorophosphate according to the procedure of Pfanderl and Weimar [24] to give rise, after hydrolysis, to 3-O-[2-azidoethoxy(hydroxy)phosphoryl]-1-O-(1′-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycerol in 70% yield. Finally, reduction of the azide function [24] (PPh₃, THF/H₂O; 67%) furnished 1-O-(1′-(Z)-hexadecenyl)-2-O-oleoyl-sn-glycerol-3-phosphocholine.

Melting points were determined with a Kofler hot-stage melting-point apparatus. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. IR spectra were recorded in CHCl₃, except when otherwise stated, on a Perkin-Elmer 1310 spectrometer. ¹H NMR and ³¹C NMR spectra were recorded in CDCl₃ with a Bruker AM 200 spectrometer. Chemical shifts are given in ppm downfield from internal Me₄Si. Splitting patterns abbreviations are: s, singulet; se, broad singulet; d, doublet; t, triplet; q, quartet; m, multiplet; p, pseudo. Mass spectra (HRMS) were recorded with a THERMOFinnigan MT 95XL at the “Centre de Spectrométrie de Masse de l’Université Claude Bernard Lyon 1”.

2.2.1. 1-O-Palmitoyl-2,3-O-isopropylidene-sn-glycerol

Colourless solid with a low melting point. [α]D²⁵±0.54 (c 10, CHCl₃). IR: 1730. ¹H NMR: δ 0.90 (3H, t, J = 7 Hz); 1.25 (24 H, se); 1.37 (3H, s); 1.45 (3H, s); 1.60 (2H, m); 2.35 (2H, t, J = 7 Hz); 3.70 (1H, dd, J = 8, J = 6 Hz); 4.10 (3H, m); 4.40 (1H, m).

¹ Thin-layer chromatography revealed the formation of a few amount of the isomer resulting from the migration of the acyl chain from sn-2 to sn-1 position which was eliminated during chromatography.

² This reagent was used freshly prepared and passed (CH₂Cl₂) through a short column of silica gel.
2.2.2. 1-O-Palmitoyl-sn-glycerol

Colourless solid. \(T_f = 73-75 \, ^\circ \text{C} \). [\(\alpha \)] \(25^\circ = -6.52 \) (c 1.5, CHCl\(_3\)). IR 3560, 3440, 1720. \(^1\)H NMR: \(\delta \) 0.9 (3H, t, \(J = 7 \, Hz \)); 1.25 (24H, se); 1.65 (2H, m); 2.40 (2H, t, \(J = 7 \, Hz \)); 3.65 (1H, dd, \(J = 11, J = 4 \, Hz \)); 4.10 (3H, m); 4.20 (1H, m). \(^{13}\)C NMR: \(\delta \) 14.14 (q), 22.72 (t), 24.95 (t), 29.17 (t), 29.29 (t), 29.49 (t), 29.64 (t), 29.69 (t), 29.72 (t), 31.96 (t), 34.20 (t), 63.41 (t), 65.18 (t), 70.32 (d), 174.40 (s). \(^1\)H and \(^{13}\)C NMR data in accordance with literature [25].

2.2.3. 3-O-(tert-Butyldiphenylsilyl)-1-O-(Z-hexadecenyl)-sn-glycerol

Light yellow oil. \(\text{IR}_{\text{film}} \) 1660. \(^1\)H NMR: \(\delta \) 0.88 (3H, t, \(J = 7 \, Hz \)); 1.05 (9H, s); 1.25 (24H, se); 2.00 (2H, m); 2.50 (OH, se); 3.70 (m, 5H); 4.35 (1H, m); 5.95 (1H, dt, \(J = 6.2, J = 1.4 \, Hz \)); 7.30 (6H, m); 7.70 (4H, m). In accordance with literature data [23]. \(^{13}\)C NMR: \(\delta \) 14.12 (q), 22.69 (t), 23.93 (t), 26.6 (s), 26.84 (t), 29.32 (t), 29.37 (t), 29.54 (t), 29.67 (t), 29.71 (t), 29.76 (t), 31.93 (t), 64.39 (t), 70.64 (d), 72.46 (t), 107.69 (d), 126.73 (d), 127.78 (d), 129.51 (d), 129.81 (d), 134.84 (d), 135.52 (d), 144.82 (d).

2.2.4. 3-O-(tert-Butyldiphenylsilyl)-1-O-(Z-hexadecenyl)-2-O-oleoyl-sn-glycerol

Light yellow oil. \(\text{IR}_{\text{film}} \) 1660. \(^1\)H NMR: \(\delta \) 0.89 (6H, m); 1.06 (9H, s); 1.26 (46H, se); 1.6 (2H, m); 2.01 (4H, m); 2.3 (2H, m); 3.81 (2H, ABX, \(J = 11.34, J = 4.86 \, Hz \)); 3.95 (2H, ABX, \(J = 5.2 \, Hz \)); 4.35 (1H, pq, \(J = 7 \, Hz \)); 5.12 (1H, m); 5.36 (2H, m); 5.92 (1H, dt, \(J = 6.2, J = 1.5 \, Hz \)); 7.45 (m, 6H); 7.65 (m, 4H). \(^{13}\)C NMR: \(\delta \) 14.12 (q), 19.25 (s), 22.70 (t), 23.91 (t), 24.92 (t), 26.74 (t), 27.20 (t), 29.13 (t), 29.22 (t), 29.34 (t), 29.38 (t), 29.54 (t), 29.59 (t), 29.73 (t), 31.92 (t), 34.39 (t), 27.23 (q), 62.21 (t), 69.95 (t), 72.59 (d), 107.72 (d), 127.72 (d), 129.74 (d), 129.97 (d), 133.17 (s), 133.22 (s), 135.52 (d), 135.57 (d), 144.89 (d), 173.01 (s).

2.2.5. 1-O-(Z-hexadecenyl)-2-O-oleoyl-sn-glycerol

Light yellow oil rapidly used in the next step. \(^1\)H NMR: \(\delta \) 0.89 (6H, m); 1.29 (46H, se); 1.62 (2H, m); 1.9–2.1 (4H, m); 2.39 (2H, m); 3.80–3.90 (4H, m); 4.39 (1H, pq, \(J = 7.3 \, Hz \)); 5.04 (1H, m); 5.35 (2H, m); 5.91 (1H, dt, \(J = 6.2, J = 1.3 \, Hz \)). \(^{13}\)C NMR: \(\delta \) 14.15 (q), 20.84–34.38 (14 CH\(_2\)), 62.12 (t), 70.20 (t), 73.09 (d), 108.3 (d), 129.75 (d), 130.05 (d), 144.59 (d), 173.58 (s).

2.2.6. 3-O-[2-Azidoethoxy(hydroxy)phosphoryl]-1-O-(Z-hexadecenyl)-2-O-oleoyl-sn-glycerol

Light yellow oil. \([\alpha]_25^\circ = -0.17 \) (c 3.5, CHCl\(_3\)). IR\(_{\text{film}}\) 1735, 1660. \(^1\)H NMR: \(\delta \) 0.89 (6H, m); 1.29 (46H, se); 1.6 (2H, m); 2.01 (4H, m); 2.3 (2H, m); 3.81 (2H, ABX, \(J = 11.34, J = 4.86 \, Hz \)); 3.95 (2H, ABX, \(J = 5.2 \, Hz \)); 4.35 (1H, pq, \(J = 7 \, Hz \)); 5.12 (1H, m); 5.36 (2H, m); 5.92 (1H, dt, \(J = 6.2, J = 1.5 \, Hz \)); 7.45 (m, 6H); 7.65 (m, 4H). \(^{13}\)C NMR: \(\delta \) 14.12 (q), 19.25 (s), 22.70 (t), 23.91 (t), 24.92 (t), 26.74 (t), 27.20 (t), 29.13 (t), 29.22 (t), 29.34 (t), 29.38 (t), 29.54 (t), 29.59 (t), 29.73 (t), 31.92 (t), 34.39 (t), 27.23 (q), 62.21 (t), 69.95 (t), 72.59 (d), 107.72 (d), 127.72 (d), 129.74 (d), 129.97 (d), 133.17 (s), 133.22 (s), 135.52 (d), 135.57 (d), 144.89 (d), 173.01 (s).

2.3. Monolayer technique

All experiments were performed at constant temperature (21 \(\pm 0.1 \) \(^\circ\text{C}\), protected from ambient light and under nitrogen saturated atmosphere. The film balance was built by R&K (Riegler and Kirstein, Wiesbaden, Germany) and equipped with a Wilhelmy-type surface-pressure measuring system. The subphase was 150 mM KCl, 10 mM Tris–HCl pH 7.2 buffer (TBS).

Phospholipids were spread at the air–water interface in hexane/ethanol 9:1 (v/v) to reach a final quantity of about 19 nmol of lipids. The solvent was allowed to evaporate for 20 min prior to compression. Then, the monolayer was compressed at 6 cm\(^2\)/min up to a lateral pressure of 33 mN/m to obtain a pressure–area isotherm (\(\pi–A \) isotherm). All lipid mixtures were used immediately after their preparation.

The limiting molecular area of molecules was estimated by extrapolating the condensed-like curve to zero surface pressure.

The calculated ideal molecular area (\(A_{\text{ideal}} \)) of two-component mixtures was determined at a given surface pressure using the following equation:

\[
A_{\text{ideal}} = x_1 A_1 + (1 - x_1) A_2
\]

where \(x_1 \) is the mol fraction of component 1 and \((A_1) \) and \((A_2) \) are the molecular areas at a \(\pi \) pressure of pure components 1 and 2, respectively. Deviations of the experimental \(A_{\text{ideal}} \) values from the sum of the contributions of the pure lipids indicate a non-ideal behavior of the lipid mixture in the mixed monolayers. Negative deviations from the sum of the contributions are indicative of area condensation and imply an intermolecular attraction between the lipids in the mixed films [26,27].
The surface elasticity moduli (Ks) were calculated from the pressure–area data obtained from the monolayer compressions using the following equation [28]:

$$Ks = -A \left(\frac{d \pi}{d A} \right)$$

where A is the molecular area at the indicated surface pressure π.

High Ks values correspond to low interfacial fluidity among packed lipids forming a monolayer. This suggests that the higher the Ks value of a monolayer is, the more difficult it is to deform it.

At a given lipid mixing ratio, an ideal Ks$^{-1}$ behavior can be determined by imparting a specific contribution of the Ks$^{-1}$ value of each pure lipid on the reciprocal elasticity coefficient, depending on both molecular area fraction and mole fraction parameters [29]. Thus, at a given constant pressure: changing from 95 mN/m for non-irradiated monolayer (curve 1) to 58 mN/m for a DLPC irradiated monolayer (curve 1V). For DLPC, the comparison between curve 1 and 1V showed clearly that the UV-irradiation led to a dramatic decrease of the limiting molecular area: 90 Å2/molecule for DLPC and 67 Å2/molecule for the irradiated DLPC derivatives. For the PPLMOPE film, the π–A isotherm obtained after the UV-irradiation presented an extrapolated limiting molecular area at about 60 Å2/molecule. A similar low decrease of the extrapolated limiting molecular area was obtained for the non-oxidizable phospholipid, DMPC (data not shown). This Ks value attests the non-ideal behavior of the lipidal mixture in the mixed monolayers.

After recording the π–A isotherm, the monolayer was stabilized 10 min at 30 mN/m fixed surface pressure to mimic the internal pressure of biological membranes [30]. Oxidation was performed by lipid monolayer UV-irradiation with a Vilber Lourmat 50 W lamp (254 nm emission maximum and 7 mW/cm² fluence rate). The monitoring period was about 180 min including various irradiation time periods. After recording the molecular area variation, a final π–A isotherm was recorded. The molecular area value at 30 mN/m surface pressure (A_{30} mN/m) after 180 min monitoring was determined and it was subtracted to the A_{30} mN/m before the UV-irradiation (ΔA_{30} mN/m).

3. Results

3.1. Effect of UV-irradiation on the physical properties of DLPC and PPLMOPE monolayers

The structure of the plasmalogen used for this study was depicted in Scheme 1. Fig. 1A showed the DLPC (curve 1) and PPLMOPE (curve 2) isotherms measured under the conditions described in Materials and methods. It may be seen that both lipids give a stable monolayer since they could be compressed to surface pressures greater than 30 mN/m. As one can see, the DLPC and PPLMOPE limiting molecular areas were located around 90 Å2/molecule and 62 Å2/molecule, respectively. The PPLMOPE limiting molecular area value is different from that obtained for the corresponding acylated phospholipid (1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoethanolamine or POPE) (data not shown). As the POPE limiting molecular area is 77 Å2/molecule under the same conditions, this clearly demonstrates that the vinyl-ether function of PPLMOPE molecules induced a more condensed bidimensional molecular arrangement at the air–water interface.

An estimation of the surface elasticity modulus (Ks) of these monolayers is presented Fig. 1B. The Ks values at 30 mN/m surface pressure were located around 95 and 140 mN/m for DLPC and for PPLMOPE, respectively. These two Ks values are characteristic of a common phospholipid monolayer. Nevertheless, the PPLMOPE Ks indicated a more rigid film than that of DLPC.

Because it has been shown that the physical close packing of the unsaturated lipid molecules enhances propagation of oxidative process [31], the surface pressure was fixed at 30 mN/m and each monolayer was UV-irradiated during 180 min. Then, the resulting monomolecular films were decompressed and new π–A isotherms were recorded (Fig. 1A, curve 1’ and 2’). For DLPC, the comparison between curve 1 and 1’ showed clearly that the UV-irradiation led to a dramatic decrease of the limiting molecular area: 90 Å2/molecule for DLPC and 67 Å2/molecule for the irradiated DLPC derivatives. For the PPLMOPE film, the π–A isotherm obtained after the UV-irradiation presented an extrapolated limiting molecular area at about 60 Å2/molecule. A similar low decrease of the extrapolated limiting molecular area was obtained with a non-oxidizable phospholipid, DMPC (data not shown). This low molecular area decrease might be linked to the subphase evaporation and/or to the molecular rearrangement of the lipid at the interface. In these conditions, the π–A isotherms obtained before and after UV-irradiation of PPLMOPE did not present a significant molecular area variation.

The Ks of these irradiated monolayers are presented Fig. 1B. As one can see, for DLPC, the UV-irradiation led to a dramatic decrease of the Ks value, at 30 mN/m surface pressure: changing from 95 mN/m for non-irradiated DLPC monolayer (curve 1) to 58 mN/m for a DLPC irradiated monolayer (curve 1’). This Ks value attests the...
formation of a more fluid film. The variation of limiting molecular area and Ks could be due to the formation of new molecular species at the air–water interface during the irradiation period because UV-irradiation is known to promote lipid peroxidation in various experimental systems [2,4]. In order to evidence the apparition of new molecular species at the air–water interface, irradiated DLPC monolayers were extracted with chloroform and the organic phases containing the lipids were then deposited on TLC plate (data not shown). The complete disappearance of the DLPC was observed, this seems to confirm the production of new molecular species from an UV-irradiated DLPC monolayer. Further analysis of these species cannot be realized because of the complexity of the product mixture.

For PPLMOPE monolayers, the Ks values before and after UV-irradiation were about the same (140 mN/m). This indicates that the PPLMOPE monolayer physical properties were not changed by the UV-irradiation.

As controls, a DLPC monolayer maintained at 30 mN/m surface pressure without UV exposure and under a saturated oxygen atmosphere presented no molecular area decrease. Indeed, the isotherm after oxygen exposure was identical to the non-irradiated DLPC one. So, the limiting molecular area decrease observed for the UV-irradiation is the direct consequence of the irradiation and cannot be induced by the presence of oxygen molecules either in the gaseous phase or dissolved in the subphase buffer.

3.2. Monitoring of the UV-induced oxidation of DLPC and PPLMOPE monolayers

The variations of the DLPC and PPLMOPE monolayers molecular area at 30 mN/m during the 180 min UV-irradiation were recorded and plotted versus time (Fig. 2). For the DLPC, the first UV-irradiation minutes exhibited a plateau. Then, a rapid molecular area decrease appeared 30 min after the beginning of the monitoring. The total molecular area diminution at 30 mN/m after 180 min UV-irradiation reached 28 Å²/molecule. This clearly shows that the UV-oxidation of DLPC monolayers led to an important molecular area decrease. For the PPLMOPE monolayer, no significant molecular area variation was observed. It seems that the UV-irradiation have no effects on this phospholipid.

![Figure 2](image-url)
This showed that the vinyl-ether bond was not affected by this UV-exposure because the PPLMOPE monolayer properties (molecular area and fluidity) were recovered after this treatment. As control, the molecular area variation of a 180 min UV-irradiated DMPC monolayer was recorded and it showed a molecular area decrease that was not significant (data not shown). These results also mean that the molecular area decrease observed in the case of an irradiated DLPC monolayer was not due to the cleavage of the ester bond or of the headgroup.

3.3. Influence of the UV-irradiation time on DLPC oxidation

The effect of irradiation time on DLPC oxidation was shown in Fig. 3A. After stabilization of monolayers at 30 mN/m surface pressure, DLPC was UV-irradiated during different times: 5, 15, 30 and 180 min curves 1, 2, 3 and 4, respectively. A control was realized with a DLPC monolayer that was not UV-irradiated. The molecular area decrease was represented versus time (Fig. 3A). As one can see, the longer the UV-irradiation was, the more important the molecular area decrease was. This experiment also showed that 5, 15 and 30 min UV-irradiation appears as a suitable delay to induce a sufficient molecular area decrease even after the UV light suppression.

The $\Delta A_{30 \text{ mN/m}}$ was calculated for each molecular area decrease and it was plotted versus the irradiation delay (Fig. 3B). This figure showed a rapid $\Delta A_{30 \text{ mN/m}}$ increase between 0 and 15 min UV-irradiation and then a slower $\Delta A_{30 \text{ mN/m}}$ increase between 15 and 180 min. Fifteen- and thirty-minute UV-irradiation exhibited about the same $\Delta A_{30 \text{ mN/m}}$ than 180 min, which is why, in the following, only 15- and 180-min UV-irradiation will be used.

3.4. Physical properties of mixed DLPC/PPLMOPE monolayers

Mixtures containing different molar ratios (from 10% to 30%) of PPLMOPE over DLPC were spread at the air–water interface and the corresponding isotherms were recorded (Fig. 4A). The molecular areas at 10, 20 and 30 mN/m surface pressures and the Ks values at 30 mN/m surface pressure were determined. The A_{ideal} of each mixture was calculated and these results were represented in Fig. 4B. Theoretical and calculated Ks values at 30 mN/m ($K_{s30 \text{ mN/m}}$) surface pressure were determined for all percentages. Fig. 4C shows the difference between the calculated $K_{s30 \text{ mN/m}}$ and the theoretical $K_{s30 \text{ mN/m}}$ ($\Delta K_{s30 \text{ mN/m}}$) plotted versus the molar percentage of PPLMOPE. Because PPLMOPE had a lower limiting molecular area than DLPC, increasing its molar percentage in the monolayer leads to the limiting molecular area decrease (Fig. 4A). Moreover, the limiting molecular areas values determined experimentally were not quite different from those calculated as ideal (Fig. 4B). So the behavior of the bidimensional mixture can be considered as ideal. The $\Delta K_{s30 \text{ mN/m}}$ were calculated and it showed that the monolayer was more fluid than expected. Indeed, because the $\Delta K_{s30 \text{ mN/m}}$ values were not great, the Ks variations between the Ks determined experimentally and those ideal were negligible (Fig. 4C), this confirms that the mixture behaves as an ideal mixture.

3.5. Monitoring of the UV-induced oxidation of mixed DLPC/PPLMOPE monolayers

DLPC mixed monolayers containing 10%, 20% or 30% mol DMPC or 10%, 15%, 20%, 25%, 28% or 30% mol PPLMOPE were formed at the air–buffer interface. The monolayers were stabilized at 30 mN/m surface pressure and the UV-irradiation was carried out during 15 min. The $\Delta A_{30 \text{ mN/m}}$ were determined for each experiment and were plotted versus DMPC or PPLMOPE molar percentage (Fig. 5A). Moreover, the lag time of each molecular area increased with the UV-exposure time. As control, the molecular area variation of a 180 min UV-irradiated DMPC monolayer was recorded and it showed a molecular area decrease that was not significant (data not shown). These results also mean that the molecular area decrease observed in the case of an irradiated DLPC monolayer was not due to the cleavage of the ester bond or of the headgroup.

![Fig. 3. Influence of irradiation time on DLPC molecular area variation. DLPC (19.2 nmol) were spread at the air–water interface. After stabilization at 30 mN/m surface pressure, the UV-irradiation was carried out during various times. A control was realized with a DLPC monolayer that was not UV-irradiated (0). The different irradiation times used were (5), 5 min; (15), 15 min; (30), 30 min and (180), 180 min. The atmosphere was nitrogen-saturated and all experiments were performed in darkness. The subphase buffer was 10 mM Tris–HCl, 150 mM KCl pH 7.2, thermostated at 21 °C. Each experiment were repeated at least two times.](image-url)
For both DMPC and PPLMOPE containing monolayers, increasing amounts of DMPC or PPLMOPE induced a decreasing \(\Delta A_{30} \) mN/m. For 10% mol PPLMOPE the \(\Delta A_{30} \) mN/m was not quite different from those obtained with 10% mol DMPC. For the DMPC-containing films, the \(\Delta A_{30} \) mN/m decreased quasi-linearly, whereas for the PPLMOPE one, a rapid decrease was observed for 15% and 20% mol PPLMOPE. The \(\Delta A_{30} \) mN/m reached about 2 Å²/molecule for 25%, 28% and 30% mol PPLMOPE monolayers. This clearly demonstrates that the PPLMOPE molecules were able to prevent DLPC oxidation because the molecular area decrease is negligible from 25% mol.

The lag time for short-time UV-irradiations was determined. Fig. 5B shows the difference between the lag time for 15 min UV-irradiation of mixed monolayers and the lag time for 15 min UV-irradiation of a DLPC monolayer (corrected lag time) plotted versus the PPLMOPE molar percentage. DMPC monolayer (10% mol) presented about the same corrected lag time as DLPC alone. For the PPLMOPE containing monolayers, the corrected lag time of the reaction was always higher than for the DMPC mixed monolayers. But this difference is more important for 25%, 28% and 30% mol PPLMOPE in the monolayer and was about 150, 460 and 500 min, respectively.

The same experiments were realized with long-time irradiation (180 min) (data not shown). It showed that the PPLMOPE containing monolayers presented about the same \(\Delta A_{30} \) mN/m than the DMPC one for all the percentages used.
It seems that \(P_{PLMOPE} \) had no effects on the DLPC molecular area decrease. However, the 30% mol \(P_{PLMOPE} \)-containing monolayer exhibited a corrected lag time 22 min greater than the corresponding DMPC one. This indicates that the \(P_{PLMOPE} \) molecules are able to delay DLPC oxidation but not to prevent it.

4. Discussion

From the results above, it is clear that the molecular area decrease of the DLPC is correlated to polyunsaturated fatty acid peroxidation. First, the UV-irradiation is necessary to trigger a decrease in the molecular area, whereas under non-oxidative conditions (under nitrogen-saturated atmosphere, protected from light and absence of UV), the molecular area does not vary significantly within the time of experiments. Second, the presence of a polyunsaturated fatty acid sensitive to the oxidative chain process is required to generate a significant molecular area decrease. Furthermore, the molecular area decrease amplitude (\(\Delta A_{30\text{ mN/m}} \)) is correlated with UV-irradiation length.

The Langmuir method was chosen because it requires only small amounts of lipids (about 20 nmol) and provides information on the structure of the macromolecular substrate. Indeed, the reaction was monitored in real-time, whereas in previous studies, photooxidation intermediates (peroxides) [2] or final oxidation products such as TBARS were analyzed.

First the physical properties of DLPC and \(P_{PLMOPE} \) were determined. The limiting molecular areas of DLPC and \(P_{PLMOPE} \) monolayers were 90 and 62 Å\(^2\)/molecule, respectively as determined by the \(\pi-A \) isotherm (Fig. 1A).

The limiting molecular area of \(P_{PLMOPE} \) is in agreement with that found by Smaby et al. [32] for ethanolamine plasmalogens. The Ks, deduced from this isotherm (Fig. 1A) , is about 100 mN/m at 30 mN/m surface pressure as for a phospholipid monolayer that is rigid compared to the average Ks of a phospholipid monolayer at 30 mN/m surface pressure (Fig. 1B). This value is higher than the Ks of a phospholipid monolayer that is rigid compared to the average Ks of a phospholipid monolayer at 30 mN/m surface pressure (Fig. 1B). This seems to confirm the structural modification described by Viitala and Peltonen [21]. The significance of this Ks decrease observed in Fig. 1B after UV-irradiation was not totally elucidated. The DLPC oxidation process was ideal (Fig. 4) . This suggests that the \(P_{PLMOPE} \) molecules were not organized in domains within the DLPC monolayer during the first 2 min and (ii) the monolayer degradation. Our results showed the direct effect of UV-irradiation on a hemi-membrane of polyunsaturated lipids, by recording the continuous decrease of DLPC molecular area (Fig. 2). It presented a plateau at the initial stage of the oxidation process. This might be due to the propagation time needed by free radicals (generated by the UV-irradiation) to oxidize DLPC.

The oxidation led to the production of many different kinds of products [36,37]. The qualitative analysis of these molecules is not straightforward because some of these degradation products were soluble in aqueous phase, such as aldehydes and lysophospholipids. In our study, a Ks decrease at 30 mN/m surface pressure was observed from 95 to 58 mN/m before and after UV-irradiation, respectively (Fig. 1B). This seems to confirm the structural modification described by Viitala and Peltonen [21]. The significance of this Ks decrease observed in Fig. 1B after DLPC UV-irradiation was not totally elucidated. The DLPC monolayer fluidity increase was detected after UV-exposure (Fig. 1B). The results about membrane fluidization or rigidization [38,39] or oxidation [40–42] after oxidation are still very controversial.

The results obtained in Fig. 3 show that the longer the UV-irradiation was, the greater the \(\Delta A_{30\text{ mN/m}} \) was. Shih and Hu [5] suggested that preformed hydroperoxides, which are likely to be present in most in vitro membrane systems, might form products that photosensitize to generate singlet oxygen. Singlet oxygen could then react with unsaturated fatty acids and generate peroxyl radicals. So, the number of generated radicals was directly related to the duration of UV-irradiation.

The theoretical limiting molecular area and the average monolayer compressibility of a mixture of two components were calculated according to Smaby et al. [29]. These parameters showed that the mixture of these two components was ideal (Fig. 4). This suggests that the \(P_{PLMOPE} \) molecules were not organized in domains within the DLPC monolayer. Since \(P_{PLMOPE} \) is homogeneously mixed to DLPC within the monolayer, it might be an efficient antioxidant.

No significant molecular area decrease was observed when a pure \(P_{PLMOPE} \) monolayer was irradiated (Fig. 2). This confirms the results obtained by Reiss et al. [16], which evidenced that no radical reaction appeared which would produce the cleavage of the vinyl-ether bond. So it seems that the plasmalogen alone was not able to generate radicals.
In order to evidence the antioxidant role of \(\text{P}_{\text{PLM}}\text{OPE} \), UV-induced oxidation of \(\text{P}_{\text{PLM}}\text{OPE}/\text{DLPC} \) mixtures were realized in monolayer. For long-time irradiation, the \(\Delta A_{300} \text{ mN/m} \) of DLPC/\(\text{P}_{\text{PLM}}\text{OPE} \) mixtures were not quite different from those of DLPC/DMPC monolayers. But 30% mol \(\text{P}_{\text{PLM}}\text{OPE} \) delayed the beginning of the molecular area decrease for about 22 min, evidencing its antioxidant capacity (data not shown). Indeed, when a long-time irradiation was applied to the \(\text{P}_{\text{PLM}}\text{OPE} \) containing monolayer, too many radicals were generated and the \(\text{P}_{\text{PLM}}\text{OPE} \) molecules were not sufficient to impede the DLPC oxidation. For short UV-exposure time (15 min), inhibition of oxidation was observed in molecular area decrease rates as well as in lag times. \(\Delta A_{300} \text{ mN/m} \) of DLPC monolayers mixed with 30% mol DMPC was divided by 2, whereas with 30% mol \(\text{P}_{\text{PLM}}\text{OPE} \) the oxidation velocity was divided by 11 as compared to 10% mol DMPC and \(\text{P}_{\text{PLM}}\text{OPE} \), respectively (Fig. 5A). The oxidation lag time of 30% mol \(\text{P}_{\text{PLM}}\text{OPE} \) monolayer was increased by about 470 min as compared to 30% mol DMPC (Fig. 5B). In monolayers, the threshold value determined for preventing oxidation under short UV-irradiation was about 25% mol \(\text{P}_{\text{PLM}}\text{OPE} \).

Plasmalogens are known to be more vulnerable to oxidation than common diacyl phospholipids [15,16]. Moreover, they were consumed by the peroxyl radicals generated by the oxidation process of unsaturated phospholipids or DLPC that interact with the vinyl-ether function [16,22,43]. Murphy [13] suggested that a radical abstracts a hydrogen atom from the \(\mathcal{1} \) carbon atom position from the plasmalogen molecule and, further reaction with an oxygen molecule induces formation of a hydroperoxyl radical intermediate. In mixed DLPC/\(\text{P}_{\text{PLM}}\text{OPE} \) monolayers, the UV-irradiation induced the production of peroxyl radicals because plasmalogens impede the propagation rather than the initiation of phospholipids oxidation. So, in the first instants of the UV-irradiation in those monolayers, some peroxyl radicals generated by the DLPC UV-exposure react more rapidly with the plasmalogen vinyl-ether function than with other DLPC molecules. As described before, plasmalogens do not really inhibit polyunsaturated lipid oxidation but they act as a chain breaker by diverting the pathway to the vinyl-ether function [13]. Thus, when all the plasmalogen molecules are degraded, the peroxyl radicals generated are able to propagate to other DLPC acyl chains by a chain reaction. This is in accordance with the fact that the \(\text{P}_{\text{PLM}}\text{OPE} \) could not prevent the DLPC oxidation during long-time UV-irradiation, whereas for 15 min UV-irradiation, because it generated fewer radicals within the monolayer, \(\text{P}_{\text{PLM}}\text{OPE} \) molecules could trap these radicals. Thereby, the polyunsaturated phospholipids were degraded slowly and the UV-oxidation was delayed.

Plasmalogens could not have been recovered after oxidation because they are consumed during the antioxidative process. Plasmalogen degradation generated several molecules [13,44,45] and this complicated the composition of the mixture obtained after monolayer UV-irradiation.

The plasma membrane of eukaryote cells is organized in lipid rafts that resist cold detergent-extraction [46]. Pike et al. [11] described that lipid rafts are enriched in plasmenylethanolamine (26.9% of total phospholipids) and in arachidonic acid. The plasmenylethanolamine content described by Pike et al. [11] in rafts is in agreement with that found to have an antioxidant behavior in our work. In addition, it has been demonstrated that 35% cholesterol had an antioxidant effect, as evidenced by Girao et al. [9]. These peculiar membrane microdomains were found to be involved in membrane trafficking and signal transduction [47]. So, cholesterol and plasmalogens could have a protective role on microdomain lipids and proteins in order to preserve raft functions. For example, arachidonic, a polyunsaturated fatty acid, is known to clearly participate in the free-radical propagation reactions [13].

Acknowledgements

We would like to thank Karim El Kirat for helpful discussions. This work was supported by the Centre National de la Recherche Scientifique and by a grant of the Région Rhone-Alpes.

References
