53 research outputs found

    Genetic deletion of neuronal PPARγ enhances the emotional response to acute stress and exacerbates anxiety: An effect reversed by rescue of amygdala PPARγ function

    Get PDF
    PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone, and it is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes.Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγ(NestinCre)), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (Wt) but not in PPARγ(NestinCre) KO mice. Using c-Fos immunohistochemistry we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala and the hippocampus of PPARγ(NestinCre) KO mice compared with Wt mice. No differences were found between Wt and KO mice in hypothalamic regions responsible for hormonal response to stress, nor in blood corticosterone levels. Microinjection of pioglitazone, into the amygdala but not into the hippocampus abolished the anxiogenic response elicited by acute stress. Results also showed that in both regions PPARγ co-localizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response, and that the amygdala is a key substrate for the anxiolytic effect of PPARγ

    Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Get PDF
    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis

    Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain

    Get PDF
    Several components in the Wnt pathway, including β-catenin and glycogen synthase kinase 3 beta, have been implied in AD pathogenesis. Here, mRNA brain levels from five-month-old tg-ArcSwe and nontransgenic mice were compared using Affymetrix microarray analysis. With surprisingly small overall changes, Wnt signaling was the most affected pathway with altered expression of nine genes in tg-ArcSwe mice. When analyzing mRNA levels of these genes in human brain, transcription factor 7-like 2 (TCF7L2) and v-myc myelocytomatosis viral oncogene homolog (MYC), were increased in Alzheimer's disease (AD) (P < .05). Furthermore, no clear differences in TCF7L2 and MYC mRNA were found in brains with frontotemporal lobar degeneration, suggesting that altered regulation of these Wnt-related genes could be specific to AD. Finally, mRNA levels of three neurogenesis markers were analyzed. Increased mRNA levels of dihydropyrimidinase-like 3 were observed in AD brain, suggesting that altered Wnt pathway regulation may signify synaptic rearrangement or neurogenesis

    Long-term suppression of forebrain neurogenesis and loss of neuronal progenitor cells following prolonged alcohol dependence in rats

    Get PDF
    Alcohol dependence leads to persistent neuroadaptations, potentially related to structural plasticity. Previous work has shown that hippocampal neurogenesis is modulated by alcohol, but effects of chronic alcohol on neurogenesis in the forebrain subventricular zone (SVZ) have not been reported. Effects in this region may be relevant for the impairments in olfactory discrimination present in alcoholism. Here, we examined the effects of prolonged alcohol dependence on neurogenesis. Rats were sacrificed directly after 7 wk of intermittent alcohol vapour exposure, or 3, 7 or 21 d into abstinence. Proliferation was assessed using BrdU and Ki67 immunoreactivity, newly differentiated neurons (neurogenesis) as doublecortin-immunoreactivity (DCX-IR), and neural stem cells using the SOX2 marker. In the dentate gyrus, chronic dependence resulted in a pattern similar to that previously reported for acute alcohol exposure : proliferation and neurogenesis were suppressed by the end of exposure, rebounded on day 3 of abstinence, and returned to control levels by days 7 and 21. In the SVZ, proliferation was also suppressed at the end of alcohol exposure, followed by a proliferation burst 3 d into abstinence. However, in this area, there was a trend for reduced proliferation on days 7 and 21 of abstinence, and this was accompanied by significant suppression of DCX-IR, indicating a long-term suppression of forebrain neurogenesis. Finally, a decrease in the SOX2 stem cell marker was detected at days 7 and 21, suggesting long-term reduction of the SVZ stem cell pool. While suppression of hippocampal neurogenesis by alcohol dependence is transient, the suppression in the forebrain SVZ appears long-lasting

    Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions

    Get PDF
    One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake

    A common molecular mechanism for cognitive deficits and craving in alcoholism

    Get PDF
    Alcohol-dependent patients commonly show impairments in executive functions that facilitate craving and can lead to relapse. The medial prefrontal cortex, a key brain region for executive control, is prone to alcohol-induced neuroadaptations. However, the molecular mechanisms leading to executive dysfunction in alcoholism are poorly understood. Here using a bi-directional neuromodulation approach we demonstrate a causal link for reduced prefrontal mGluR2 function and both impaired executive control and alcohol craving. By neuron-specific prefrontal knockdown of mGluR2 in rats, we generated a phenotype of reduced cognitive flexibility and excessive alcohol-seeking. Conversely, restoring prefrontal mGluR2 levels in alcohol-dependent rats rescued these pathological behaviors. Also targeting mGluR2 pharmacologically reduced relapse behavior. Finally, we developed a FDG-PET biomarker to identify those individuals that respond to mGluR2-based interventions. In conclusion, we identified a common molecular pathological mechanism for both executive dysfunction and alcohol craving, and provide a personalized mGluR2-mechanism-based intervention strategy for medication development of alcoholism

    Promotoras as Mental Health Practitioners in Primary Care: A Multi-Method Study of an Intervention to Address Contextual Sources of Depression

    Get PDF
    We assessed the role of promotoras—briefly trained community health workers—in depression care at community health centers. The intervention focused on four contextual sources of depression in underserved, low-income communities: underemployment, inadequate housing, food insecurity, and violence. A multi-method design included quantitative and ethnographic techniques to study predictors of depression and the intervention’s impact. After a structured training program, primary care practitioners (PCPs) and promotoras collaboratively followed a clinical algorithm in which PCPs prescribed medications and/or arranged consultations by mental health professionals and promotoras addressed the contextual sources of depression. Based on an intake interview with 464 randomly recruited patients, 120 patients with depression were randomized to enhanced care plus the promotora contextual intervention, or to enhanced care alone. All four contextual problems emerged as strong predictors of depression (chi square, p < .05); logistic regression revealed housing and food insecurity as the most important predictors (odds ratios both 2.40, p < .05). Unexpected challenges arose in the intervention’s implementation, involving infrastructure at the health centers, boundaries of the promotoras’ roles, and “turf” issues with medical assistants. In the quantitative assessment, the intervention did not lead to statistically significant improvements in depression (odds ratio 4.33, confidence interval overlapping 1). Ethnographic research demonstrated a predominantly positive response to the intervention among stakeholders, including patients, promotoras, PCPs, non-professional staff workers, administrators, and community advisory board members. Due to continuing unmet mental health needs, we favor further assessment of innovative roles for community health workers

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Particulate matter exposure during pregnancy is associated with birth weight, but not gestational age, 1962-1992: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to air pollutants is suggested to adversely affect fetal growth, but the evidence remains inconsistent in relation to specific outcomes and exposure windows.</p> <p>Methods</p> <p>Using birth records from the two major maternity hospitals in Newcastle upon Tyne in northern England between 1961 and 1992, we constructed a database of all births to mothers resident within the city. Weekly black smoke exposure levels from routine data recorded at 20 air pollution monitoring stations were obtained and individual exposures were estimated via a two-stage modeling strategy, incorporating temporally and spatially varying covariates. Regression analyses, including 88,679 births, assessed potential associations between exposure to black smoke and birth weight, gestational age and birth weight standardized for gestational age and sex.</p> <p>Results</p> <p>Significant associations were seen between black smoke and both standardized and unstandardized birth weight, but not for gestational age when adjusted for potential confounders. Not all associations were linear. For an increase in whole pregnancy black smoke exposure, from the 1<sup>st </sup>(7.4 μg/m<sup>3</sup>) to the 25<sup>th </sup>(17.2 μg/m<sup>3</sup>), 50<sup>th </sup>(33.8 μg/m<sup>3</sup>), 75<sup>th </sup>(108.3 μg/m<sup>3</sup>), and 90<sup>th </sup>(180.8 μg/m<sup>3</sup>) percentiles, the adjusted estimated decreases in birth weight were 33 g (SE 1.05), 62 g (1.63), 98 g (2.26) and 109 g (2.44) respectively. A significant interaction was observed between socio-economic deprivation and black smoke on both standardized and unstandardized birth weight with increasing effects of black smoke in reducing birth weight seen with increasing socio-economic disadvantage.</p> <p>Conclusions</p> <p>The findings of this study progress the hypothesis that the association between black smoke and birth weight may be mediated through intrauterine growth restriction. The associations between black smoke and birth weight were of the same order of magnitude as those reported for passive smoking. These findings add to the growing evidence of the harmful effects of air pollution on birth outcomes.</p

    The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy

    Get PDF
    corecore