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Abstract The rapid expansion of multicellular

native and alien species outbreaks in aquatic and

terrestrial ecosystems (bioinvasions) may produce

significant impacts on bacterial community dynamics

and nutrient pathways with major ecological implica-

tions. In aquatic ecosystems, bioinvasions may cause

adverse effects on the water quality resulting from

changes in biological, chemical and physical proper-

ties linked to significant transformations of the

microbial taxonomic and functional diversity. Here

we used an effective and highly sensitive experimental

strategy, bypassing the efficiency bottleneck of the

traditional bacterial isolation and culturing method, to

identify changes of the planktonic microbial commu-

nity inhabiting a marine coastal lagoon (Varano,

Adriatic Sea) under the influence of an outbreak-

forming alien jellyfish species. Water samples were

collected from two areas that differed in their level of

confinement inside in the lagoon and jellyfish densities

(W, up to 12.4 medusae m-3; E, up to 0.03 medusae

m-3) to conduct a snapshot microbiome analysis by a

metagenomic approach. After extraction of the genetic

material in the environmental water samples, we deep-

sequenced metagenomic amplicons of the V5–V6

region of the 16S rRNA bacterial gene by an Illumina

MiSeq platform. Experiments were carried out in
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triplicates, so six libraries of dual indexed amplicons

of 420 bp were successfully sequenced on the MiSeq

platform using a 2 9 250 bp paired-end sequencing

strategy. Approximately 7.5 million paired-end reads

(i.e. 15 million total reads) were generated, with an

average of 2.5 million reads (1.25 M pairs) per sample

replicate. The sequence data, analyzed through a novel

bioinformatics pipeline (BioMaS), showed that the

structure of the resident bacterial community was

significantly affected by the occurrence of jellyfish

outbreaks. Clear qualitative and quantitative differ-

ences were found between the western and eastern

areas (characterized by many or few jellyfish), with 84

families, 153 genera and 324 species in the W samples,

and 104 families, 199 genera and 331 species in the E

samples. Significant differences between the two

sampling areas were particularly detected in the

occurrence of 16 families, 22 genera and 61 species

of microbial taxa. This is the first time that a NGS

platform has been used to screen the impact of jellyfish

bioinvasions on the aquatic microbiome, providing a

preliminary assessment of jellyfish-driven changes of

the functional and structural microbial biodiversity.

Keywords Metagenomics � Next-generation

sequencing platforms � Marine microbial ecology �
Jellyfish biomass

Introduction

The recent advent of next generation sequencing

technologies has revolutionized microbiome research,

allowing unprecedented depth and resolution at

affordable costs and, thus, enabling large-scale studies

of microorganisms living in taxonomically and phys-

ically complex habitats. Because microbes have lived

on Earth for more than 3 billion years, they are

ubiquitous and play important roles in the Earth’s

ecosystems (Kowalchuk et al. 2008). In particular,

they participate in essential biogeochemical processes

such as the carbon, nitrogen and sulphur cycles in

terrestrial and aquatic ecosystems, are producers and

decomposers in food webs (Dorigo et al. 2005; Kisand

et al. 2012; Zehr 2010), and are primarily responsible

for degradation of a large variety of natural organic

compounds (Ogawa et al. 2001).

Aquatic environments harbor abundant and diverse

microbial communities that ensure their functioning and

sustainability (Azam and Malfatti 2007; Zinger et al.

2012). In recent decades, the importance of bacterio-

plankton has been persuasively demonstrated in nutrient

cycling and food-web structure in the marine environ-

ment (Azam 1998; Cho 1990) and a multitude of marine

bacteria have been isolated in ocean sites and different

coastal areas of temperate, tropical and polar zones

(Pommier et al. 2005; Rusch et al. 2007; Stabili and

Cavallo 2011). Aquatic microbes are genetically, phys-

iologically and ecologically diverse, and exhibit many

different physiological responses, adaptation and evo-

lutionary patterns (Bahgat 2011; Kemp and Aller 2004).

The microbiota composition varies as a function of

water class (e.g. oceans, lakes, rivers, springs, ponds and

ground water) and it is affected by different factors such

as water salinity, organic compound concentration,

turbidity, temperature, and contamination sources

(Bahgat 2011).

Study of the overall biodiversity is crucial for

assessing and monitoring aquatic ecosystems; however,

the composition, abundance, and distribution patterns of

microbial communities usually remain poorly explored

(Kisand et al. 2012; Zinger et al. 2012).

Previously, difficulties in collecting representative

samples in particular habitats (e.g. deep sea) and

experimental limitations related to the characteriza-

tion of the uncultivable microbes have been the two

main limitations for comprehensive assessments of the

microbial communities living in certain environments

(Kisand et al. 2012). This view recently changed with

the development of culture-independent approaches,

such as metagenomics. As defined by Thomas et al.

(2012), metagenomics represent the direct genetic

analysis of genomes contained in an environmental

sample, without isolation or culture of individual

organisms. The metagenomic approach is experienc-

ing an explosive improvement since the advent of

high-throughput Next-Generation Sequencing (NGS)

technologies, which allow an unprecedented large-

scale identification of organisms and communities
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01100 Viterbo, Italy

L. Stabili

Istituto per l’Ambiente Marino Costiero (IAMC), CNR,

Via Roma 3, 74100 Taranto, Italy

924 C. Manzari et al.

123



through the production of an enormous amount of

genetic data (Bourlat et al. 2013). Either of two

experimental strategies can be applied starting from

the total extracted DNA: (1) the entire metagenome is

sequenced by a shotgun approach, or (2) gene markers

specific for a given taxon are selectively sequenced

after their amplification by PCR primer pairs able to

function over a broad taxonomic range (amplicon-

based approach). The second approach is the most

common strategy applied in various ecological set-

tings and is used to investigate prokaryotic diversity

through analysis of hypervariable regions of the 16S

rRNA gene (Hajibabaei et al. 2011; Klindworth et al.

2013). Illumina/Solexa represents the NGS sequenc-

ing system most widely used for amplicon-based

metagenomic studies (Luo et al. 2012), providing

optimal performances in terms of time, costs and

coverage (Caporaso et al. 2012; Kozich et al. 2013;

Liu et al. 2012; Loman et al. 2012; Quail et al. 2012).

In particular, the Illumina MiSeq benchtop sequencer

is very suitable for amplicon-based metagenomic

studies, considering its overall features including the

obtainable read length up to 300 m. Nevertheless, few

available experimental protocols for the amplicon-

based metagenomic approach on the MiSeq platform

are available involving the application of the TruSeq

(Caporaso et al. 2012; Gilbert et al. 2010; Rubin et al.

2013) or a custom designed approach (Kozich et al.

2013).

We used a flexible strategy including both a NGS

library preparation based on the Illumina-Nextera

protocol and a user-friendly data analysis workflow

(BioMaS, Bioinformatic analysis of Metagenomic

AmpliconS) for monitoring changes in the planktonic

microbiome potentially related to the invasion and

proliferation of a non-indigenous jellyfish population

(the moon jelly Aurelia sp.) in a lagoonal habitat, the

Varano lagoon (South Adriatic). This strategy may

allow the production of a large number of high quality

sequencing reads, minimizing the cost per run and

simplifying the experimental procedure.

Jellyfish blooms are occurring with increasing

frequency and magnitude in many estuarine and

coastal habitats (Attrill et al. 2007; Boero et al.

2008; Mills 2001; Purcell 2012). In the Mediterranean

Sea, Aurelia sp. invasions are widely recorded, in the

Mljet lakes, Croatia (Malej et al. 2007), in Etang de

Thau, France (Bonnet et al. 2012), in the Gulf of

Trieste, Italy and Slovenia (Malej et al. 2012). This is

also the case for the Varano lagoon, a coastal lagoonal

habitat with a strong aquaculture vocation and tradi-

tion. The Varano ecosystem was invaded by the moon

jellyfish Aurelia sp. more than 10 years ago and now

has a persistent population with high densities in some

parts (Belmonte et al. 2011; Manini et al. 2005;

Scorrano 2014).

The invasion of Aurelia jellyfish in coastal lagoons

often can be related to the introduction of mussel

culture rafts bearing the polyp stages, which asexually

release great numbers of medusae into the water

column (Lo et al. 2008; Purcell, 2012). In Varano

lagoon, eventually a year-round resident population

was established with high densities of jellyfish (mean

4.5 ind) in spring and summer months. Molecular COI

barcoding assigned the Varano jellyfish population to

none of the presently known Aurelia species in the

Mediterranean Sea (Aurelia sp. 5 and Aurelia sp. 8

sensu Dawson), suggesting a new jellyfish bioinvasion

event (Scorrano, 2014). Mussel rafts are concentrated

in the western part of Varano lagoon and may have

introduced attached jellyfish polyps to the lagoon.

Active swimming of the jellyfish against the main W–

E water flow may contribute to maintaining a spatial

segregation of jellyfish in the western part of the

lagoon.

Jellyfish may acquire key roles in planktonic food

webs by converting large quantities of carbon (C) into

gelatinous biomass available only to a few higher

consumers (Arai, 2005). Furthermore, the biomass of

jellyfish generates a large amount of carbon-rich

colloidal and dissolved organic matter (jelly-DOM)

(Hansson and Norrman 1995) that is released into the

water and easily available to the bacterioplankton

(Carlson et al. 2002; Condon and Steinberg 2008),

with consequences for bacterial growth and enzymatic

activities (Riemann et al. 2006; Titelman et al. 2006).

The protein-rich decay jellyfish biomass and the

mucous excretion of living jellyfish also are readily

assimilated by jellyfish-associated and free-living

bacteria and can cause rapid shifts in microbiome

structure and organization (Tinta et al. 2010, 2012).

The bacterial use of jelly-DOM could lead to the

repackaging of gelatinous organic carbon and its

reincorporation into the food web (Condon et al.

2011). In addition, the decay of gelatinous biomass

(jellyfalls) following bloom events leads to the rapid

and massive release in the water column of dissolved

inorganic and organic compounds (Pitt et al. 2009).
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The present investigation focused on assessing the

potential of NGS-based methods for rapid detection of

structural and functional changes in the microbial

community associated with jellyfish blooms in a

marine coastal lagoon.

Materials and methods

Sampling

The Varano lagoon is a shallow enclosed coastal basin

(Fig. 1) located on the southern Adriatic coast (Apulia

region, Italy) on the north side of the Gargano prom-

ontory. The lagoon has a 33 km perimeter and covers an

area of over 60.5 km2. The lagoon represents a typical

eurythermal habitat (low 7 �C, high up to 30 �C), with a

maximum depth of 5 m and high inter-seasonal phys-

ico-chemical variability. Freshwater springs are distrib-

uted all around the lagoon perimeter (Fig. 1) and two

artificial channels (foce Capojale, NW; foce Varano,

NE) regulate lagoon-sea water exchanges (Specchiulli

et al. 2008), facilitating the hydrodynamic balance of sea

water masses at reduced salinity (25–29 ppt) through

tidal and wind forces. Prevailing N–NE winds make

these exchanges much more effective in autumn and

winter (Spagnoli et al. 2002), with the main sea water

inflow through the NW channel. Due to the small tidal

excursion and reduced exchange with the adjacent

coastal area, water residence time is very long (about

1.5 years; Specchiulli et al. 2008).

To reveal changes in the planktonic bacterial

communities in the lagoon relative to the direct or

indirect impact of the jellyfish biomass, a metagenomic

approach was applied to triplicate water samples

collected on 17 July 2013 in two areas of the lagoon

(Fig. 1), designated West (W) and East (E), and

differing in their level of confinement (Melaku Canu

et al. 2012) and jellyfish densities (W: up to

12.4 ind m-3; E: up to 0.03 ind m-3; Scorrano

2014). Samples were collected in pre-sterilized bottles

at -0.50 m depth and stored at ?4 �C until filtration

through a 0.2-lm pore size filter (47 mm diameter)

MO BIO (MoBio Laboratories, Inc. CA, USA).

Sample membranes then were stored at ?4 �C until

DNA extraction, which was carried out within 4 h from

the sampling. Vertical profiles of temperature, salinity,

pH, depth, and dissolved oxygen were recorded every

6 weeks by a multiparametric CTD probe Ocean Seven

401 (IDRONAUT; Scorrano 2014). From that dataset,

we obtained the means ± standard deviations of

temperature, salinity, and oxygen saturation at 0.5 m

depth in triplicate samples collected at W and E areas

on the day of water sample collection.

DNA extraction

Microbial DNA was extracted from each filter (3

replicates/area) using the MO BIO PowerWater�

DNA Isolation Kit (MoBio Laboratories) following

the manufacturer’s instructions. The bead-beating step

was performed in the FastPrep Instrument (BIO 101,

Carlsbad, Canada) for 40 s at speed 6. The homoge-

nized samples were centrifuged (4,0009g for 3 min at

room temperature) and the supernatant subjected to

the subsequent protein and inhibitor removal steps as

recommended by the manufacturer. DNA was eluted

in 100 ll of the PW6 solution. The quantity and

quality of the extracted DNA were assessed by

spectrophotometric quantification using NanoDrop

2000c (Thermo Fisher Scientific, Inc., DE, USA)

and agarose gel (1.2 %) electrophoresis, respectively.

The extracted DNA was stored at -20 �C.

Library preparation and sequencing

Among the nine hypervariable regions present in the

16S rRNA gene, the V5–V6 regions were chosen as

Fig. 1 Map of Varano

lagoon (geographical

coordinates on the axes)

with West (W) and East

(E) replicate sampling

points (plus symbol) and

fresh water springs

(asterisk)
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the target for prokaryotic identification (Chakravorty

et al. 2007). The microbial DNA extracted from each

sample, named respectively W1, W2, W3 and E1, E2,

E3, was used as templates for the amplicon prepara-

tion. The strategy adopted for the amplicon library

preparation consisted of two successive rounds of

PCR. In the first round, the V5–V6 regions were

amplified from the extracted DNA using the overhang

primer pairs, named V5–V6 NextFor/Rev (50TCGTCG

GCAGCGTCAGATGTGTATAAGAGACAG[ATTAGA

TACCCYGGTAGTCC]30/50GTCTCGTGGGCTCGGAG

ATGTGTATAAGAGACAG[ACGAGCTGACGACARC

CATG]30) and designed to contain (from 50 to 30ends)

the transposon Nextera’s sequences (Nextera DNA

sample preparation guide, Illumina) and the universal

BV5 (Next For) and AV6 (Next Rev; Stecher et al.

2010) priming sequences (underlined nucleotides).

Amplification was performed using the Phusion�

High-Fidelity DNA polymerase (Thermo Fisher Sci-

entific, Inc., New England Biolabs) in a Mastercycler

Thermal Cycler (Eppendorf, Hamburg, Germany).

Each reaction mixture contained 0.25 ng of extracted

DNA, 1X Buffer HF, 0.2 mM dNTPs, 0.5 lM of each

primer, and 1U Phusion DNA Polymerase in a final

volume of 50 ll. The cycling parameters for PCR were

standardized as follows: initial denaturation 98 �C for

30 s, followed by 10 cycles of denaturation at 98 �C for

10 s, annealing at 58 �C for 30 s, extension at 72 �C

for 15 s, and subsequently 15 cycles of denaturation at

98 �C for 10 s, annealing at 62 �C for 30 s, extension

at 72 �C for 15 s, with a final extension step of

7 min at 72 �C. All PCRs were performed in the

presence of a negative (Molecular Biology Grade

Water, RNase/DNase-free water) and a positive

(genomic DNA from pure culture of Oenococcus

oeni) control. The PCR products (around 354 bp

long) were visualized on 1.2 % agarose gel and

purified using the AMPure XP Beads at a concen-

tration of 0.89 vol/vol (Agencourt Bioscience Cor-

poration, Beverly, Massachusetts).

The purified amplicons were used as templates in

the second PCR round, which was performed with the

Nextera indices priming sequences as required by the

dual index approach reported in the Nextera DNA

sample preparation guide (Illumina). The dual index

strategy consists of incorporating unique indices into

both ends of the library molecules to allow sample

identification for the subsequent bioinformatics ana-

lysis (Kozich et al. 2013).

The 50 ll reaction mixture was made up of the

following reagents: template DNA (40 ng), 1X Buffer

HF, dNTPs (0.1 mM), Nextera index primers (index 1

and 2) and 1U Phusion DNA Polymerase system. The

cycling parameters were those suggested by the

Illumina Nextera protocol. The dual indexed ampli-

cons obtained (*420 bp) were purified using mag-

netic beads AMPure XP (0.6X, vol/vol), checked for

quality control on Bioanalyzer 2100 (Agilent Tech-

nologies, Santa Clara, California) and quantified by

fluorimetry using the Quant-iTTM PicoGreen�

dsDNA Assay Kit (Invitrogen, Carlsbad, California).

Finally, equimolar ratios of the purified amplicons (six

in total) were pooled and subjected to 2 9 250 bp

paired-end sequencing on the MiSeq platform. In

order to increase the genetic diversity, as required by

the MiSeq platform, the phage PhiX genomic DNA

library was added to the mix and co-sequenced

(Kozich et al. 2013).

Taxonomic binning

A modular pipeline, called BioMaS developed in our

laboratory, was applied to analyze the paired-end (PE)

reads obtained by the six samples analyzed (3 repli-

cates/area) in order to characterize the bacterial

composition. Before BioMaS analysis, a statistical

and quality check of the reads was carried out by

FastQC and denoising performed by trim-galore

(http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) setting a quality-score threshold equal to

25.

The BioMaS pipeline consists mainly of three steps.

Because most of the generated reads were overlapping

due to the amplicon length (*420 bp) being shorter

than the total sequenced PE length (2 9 250 bp), in

the first step, the overlapping PE reads were merged

into contiguous consensus sequences using Flash

(Magoc and Salzberg 2011). These were subsequently

dereplicated by Usearch (Edgar 2010), but retaining

the information about the total number of original

consensus sequences. A small proportion of PE reads

(generally about 5 %), which did not overlap to form a

consensus contig probably due to the sequencing of

amplicon subfragments. These were further cleaned

through the removal of low quality regions and

retained for further analysis as paired-end if both

sequenced reads were C50 bp long; otherwise, they

were discarded. Then, a similarity-based analysis was
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performed in order to infer the taxonomic origin of the

generated metagenomic sequences. In particular, the

consensus sequences and the non-overlapping pairs

were mapped against the RDP database (Ribosomal

Database Project; release 11.2; Cole et al. 2009) by

means of Bowtie2 (Langmead and Salzberg 2012) and

the mapping data were filtered using a Python script

according to two parameters: identity % (C97 %) and

query coverage (C95 %). The choice of this stringent

% identity threshold allows classifying most of the

reads up the species level (Mende et al. 2013). Finally,

all mapped reads fulfilling the filters set were

taxonomically annotated using the Tango tool (Cle-

mente et al. 2011). All the residual unclassified reads

were clustered in UTU (unknown taxonomic units) at

C97 % similarity by Usearch and those represented

by fewer than 5 sequences in all samples were

discarded. Statistically significant differences of the

bacterial population in different samples were deter-

mined at family, genus and species levels using the

DESeq, an R/Bioconductor package (Anders and

Huber 2010).

Results

The water samples among the low-jellyfish (E1, E2,

E3) and high-jellyfish (W1, W2, W3) areas did not

differ significantly in the measured abiotic parameters

(T, S, oxygen saturation; Table 1), merely showing a

slight intrusion of cold freshwater in the E zone.

Differences in oxygen saturation were not significant

between the two sectors. From the membrane filters,

microbial DNA samples (W1, W2, W3, E1, E2, E3)

were extracted with average DNA yields of 2.64 and

1.97 lg for W and E samples, respectively.

Six libraries of dual indexed amplicons of 420 bp

(Fig. 2) were successfully sequenced on the MiSeq

platform using a 2 9 250 bp paired-end sequencing

strategy. Approximately 7.5 million paired-end (PE)

reads (i.e. 15 million total reads) were generated,

averaging 1.25 million PE reads (2.5 M reads) per

sample replicate (see Sup. Table 1 in Supplementary

Material). All sequenced samples generated reads of

high quality, mostly having the expected length of

250 bp. The paired-end reads produced for the six

samples (3 replicates/area) were subjected to BioMaS

computation. First, the paired-end reads were merged

and low quality regions removed from the non-

overlapping reads. About 94 % of the paired-end

reads were merged into a consensus sequence, while

2 % were treated as paired-end and the remaining 4 %

were discarded. The sequences passing the quality

control were then compared to the RDP database

content. About 86.6 % of the analyzed sequences had

at least one match in RDP above the adopted similarity

cut-off (97 %). Finally, the taxonomic binning of the

matching reads was carried out by using TANGO

(Clemente et al. 2011). The PE reads matching against

RDP with a percent identity above the threshold

(86.6 %) were classified at the family (74.2 %), genus

(38.2 %) and species (8.6 %) levels (Supplementary

Tables). Remarkably, rarefaction curves (Fig. S1)

indicated that species richness was comprehensively

represented in all samples.

A total of 109 families, 213 genera and 353 species

were represented in the samples, with clear differences

between the W samples with high jellyfish density (84

families, 153 genera and 324 species) and the E

samples with low-no jellyfish (Scorrano 2014; 103

families, 199 genera and 331 species; Supplementary

Material).

The heat map showed clear-cut clustering of the

bacterial populations in W and E samples (Fig. 3).

Furthermore, the beta-diversity values calculated for

all nine pairwise comparisons involving the W and E

samples supported very good reproducibility between

microbial communities among the three replicates

(0.151 ± 0.016).

Statistically significant differences between the aqua-

tic bacterial communities in the W and E zones were

determined at family, genus and species levels using

DESeq (Table 2 and Supplementary Tables 3, 5, 7). In

particular, we observed significant differences in

the occurrence of 16 families (Halomonadaceae,

Saprospiraceae, Shewanellaceae, Flavobacteriaceae,

Chloroplast, Oceanospirillaceae, Cryomorphaceae,

Comamonadaceae, Flammeovirgaceae, Rhodobactera-

ceae, Family_II (Cyanobacteria), Acidimicrobiaceae,

Simkaniaceae, Acholeplasmataceae, Rhodospirillaceae,

Table 1 Abiotic parameters measured at E (low-jellyfish) and

W (high-jellyfish) areas

Temperature (�C) O2 saturation (%) Salinity (%)

E 28.71 ± 0.40 95.48 ± 1.4 25.05 ± 0.45

W 28.12 ± 0.04 94.78 ± 1.4 26.22 ± 1.6

Data are reported as mean values ± standard errors

928 C. Manzari et al.

123



Microbacteriaceae), 22 genera and 61 species in the W

and E samples (Table 2).

The families Halomonadaceae, Saprospiraceae,

Shewanellaceae, Chloroplast, Flammeovirgaceae, Fam-

ily_II (Cyanobacteria), and Simkaniaceae were signif-

icantly enriched in the jellyfish-rich (W) zone with an

over-representation of several genera including Halo-

monas, Haliscomenobacter, Shewanella, Fabibacter,

Roseivirga and Owenweeksia (see the relevant normal-

ized counts in Supplementary Material). Interestingly,

the amplicon based approach detected also the chloro-

plast rRNA of Bacillariophyta and an over-representa-

tion of diatoms the W zone was significantly supported.

Conversely, the families Oceanospirillaceae, Comamo-

nadaceae, Acholeplasmataceae, Acidimicrobiaceae,

Cryomorphaceae, Flavobacteriaceae, Rhodobactera-

ceae, Rhodospirillaceae, Microbacteriaceae were sig-

nificantly enriched in the jellyfish-poor (E) zone with

several over-represented genera including Celluloph-

aga, Crocinitomix, Ilumatobacter, Diaphorobacter.

The tree in Fig. S2 graphically illustrates significantly

over- and under- represented families and genera in the

jellyfish-rich zones (all six sample-specific trees gener-

ated by BioMaS tool are available in Supplementary

Figs. 3–8).

About 12.8 % of the reads did not show any

significant match (C97 % identity) against the RDB.

Those reads were probably derived from novel species

not represented in the RDB and were classified as

UTU. In total, we detected 44 UTUs, showing

significantly different abundances in the W and E

zones (Supplementary Tables 8–9).

Discussion

Molecular tools are increasingly used for screening

biodiversity in terrestrial and aquatic ecosystems to

develop appropriate management programs (e.g.

Bourlat et al. 2013; Darling and Mahon 2011; Geller

et al. 2010; Karp et al. 1997). In the marine environ-

ment, molecular methods can reveal patterns of

Fig. 2 Agilent Bioanalyzer

chip profile of purified

amplicons (420 bp), relative

to V5–V6 hypervariable

region of the bacterial 16S

rRNA gene, obtained

applying the modified

Nextera’s protocol for the

six samples (W1, W2, W3

and E1, E2, E3). L,

molecular weight marker.

Lanes 1–3, West samples

(W1, W2, W3); lanes 4–6,

East samples (E1, E2, E3).

Bands at 35 and 10,380 bp

represent internal size

standards and not DNA from

the sample
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community dynamics and ecosystem functioning

processes by rapid detection of the identities of a vast

majority of taxa in a community and, therefore, are

used for environmental monitoring programs, directly

contributing to development of management strategies

of coastal areas. Molecular methods can play an

important role in several fields of aquatic bioinvasions,

including identification of non-indigenous species and

their origins, historical reconstruction of invasive

routes and the underlying pathways, estimation of

genetic connectivity among populations, as well as

detection of overall changes in the residential native

community induced by new invaders (e.g. Darling and

Blum 2007; Darling and Mahon 2011; Estoup and

Guillemaud 2010; Geller et al. 2010; Ghabooli et al.

2013; Hänfling 2007; Miura 2007; Muirhead et al.

2008; Piraino et al. 2014). In particular, NGS

platforms are known as rapid and sensitive means of

characterizing complex microbial communities, and

are supplanting traditional surveys of microbial

diversity based on initial cultivation screenings fol-

lowed by PCR amplification, cloning and sequencing

of universally conserved molecules, such as the 16S

rRNA gene (reviewed by Degnan and Ochman 2012).

We investigated the changes in the planktonic

microbiome diversity of a lagoon habitat probably

driven by the invasion and proliferation of a non-

indigenous jellyfish (Aurelia sp.). In parallel, this

study offered the opportunity to verify the effective-

ness of coupling the Illumina protocol with the

BioMaS pipeline. Significant differences in microbi-

ota abundance were determined at family, genus and

species levels (Table 2 and Supplementary Material)

and interpreted as related to changes in the nutrient

availability. Indeed, jellyfish carcasses and mucous

exudates possibly serve as important carbon sources

for these bacteria. The total organic content of

jellyfish, in fact, generally consists of carbohydrates

(7 ± 5 %), intermediate lipids (22 ± 12 %), and

especially proteins (72 ± 14 %; Billett et al. 2006;

Doyle et al. 2006; Pitt et al. 2009; Yamamoto et al.

2008).

Interestingly, some of these results are confirmed

by a study on the microbial diversity in the Varano

lagoon conducted by traditional analysis of the

cultivable heterotrophic bacterial community, fol-

lowed by the standard PCR-based amplification of

the 16S rRNA gene (Caprioli 2014; Stabili et al. 2013).
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Fig. 3 Heat map visualization at the family level of the six samples (W1, W2, W3 and E1, E2, E3), obtained applying the DESeq

package on the taxonomic data produced by BioMaS, which show the clustering of samples from jellyfish-rich and jellyfish-poor sites
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Table 2 Statistically significant differences of the bacterial population in East (E) and West (W) areas at family (A), genus (B) and

species (C) level

ID E nCount W nCount FoldChange Pval Padj

(A) Family

Halomonadaceae 4.59E?04 9.04E?04 1.97 2.51E-38 2.74E-36

Saprospiraceae 1.89E?04 3.92E?04 2.08 3.52E-30 1.92E-28

Shewanellaceae 2.15E?04 3.89E?04 1.81 4.10E-21 1.49E-19

Flavobacteriaceae 9.84E?04 6.13E?04 0.62 2.80E-20 7.63E-19

Chloroplast 2.01E?03 6.47E?03 3.21 3.94E-18 8.58E-17

Oceanospirillaceae 3.48E?03 8.25E?02 0.24 1.30E-14 2.36E-13

Cryomorphaceae 3.28E?04 2.01E?04 0.61 4.34E-14 5.92E-13

Comamonadaceae 6.91E?03 2.65E?03 0.38 4.06E-14 5.92E-13

Flammeovirgaceae 5.63E?04 7.81E?04 1.39 3.67E-10 4.45E-09

Rhodobacteraceae 4.90E?04 3.42E?04 0.70 7.31E-10 7.97E-09

Family_II 1.68E?05 2.48E?05 1.48 7.65E-09 7.58E-08

Acidimicrobiaceae 6.84E?03 3.95E?03 0.58 3.56E-06 3.23E-05

Simkaniaceae 1.13E?02 8.92E?02 7.87 5.35E-06 4.49E-05

Acholeplasmataceae 2.77E?03 1.47E?03 0.53 0.00 0.02

Rhodospirillaceae 3.27E?04 2.75E?04 0.84 0.01 0.06

Microbacteriaceae 2.53E?05 2.19E?05 0.86 0.01 0.08

(B) Genus

Halomonas 8.73E?04 1.83E?05 2.09 8.49E-64 1.81E-61

Haliscomenobacter 3.58E?04 7.89E?04 2.20 1.75E-50 1.86E-48

Shewanella 4.10E?04 7.86E?04 1.92 3.39E-36 2.41E-34

GpIIa 3.19E?05 5.01E?05 1.57 3.88E-23 2.06E-21

Crocinitomix 3.63E?04 1.81E?04 0.50 1.82E-22 7.74E-21

Fabibacter 6.83E?04 1.01E?05 1.47 2.34E-17 8.32E-16

Diaphorobacter 1.00E?04 3.67E?03 0.37 1.58E-13 4.80E-12

Bacillariophyta 1.30E?03 5.15E?03 3.96 5.40E-12 1.44E-10

Roseivirga 3.34E?04 4.98E?04 1.49 1.65E-11 3.90E-10

Paracoccus 3.21E?01 1.88E?03 58.51 2.81E-11 5.99E-10

Nitrincola 4.19E?03 9.72E?02 0.23 6.31E-11 1.22E-09

Cellulophaga 6.58E?03 2.55E?03 0.39 9.21E-09 1.64E-07

Owenweeksia 6.65E?03 1.25E?04 1.87 4.56E-08 7.47E-07

Ilumatobacter 1.30E?04 7.97E?03 0.61 8.13E-06 0.00

Simkania 2.20E?02 1.81E?03 8.24 1.16E-05 0.00

Haloferula 3.63E?02 1.71E?03 4.71 1.24E-05 0.00

Loktanella 2.70E?01 5.41E?02 20.05 7.48E-05 0.00

Micrococcus 0.00E?00 2.38E?02 Inf 8.47E-05 0.00

Umboniibacter 1.88E?02 0.00E?00 0.00 0.00 0.00

Acholeplasma 5.23E?03 2.95E?03 0.56 0.00 0.01

Arenibacter 1.97E?03 7.94E?02 0.40 0.00 0.02

Legionella 1.07E?02 0.00E?00 0.00 0.01 0.09

(C) Species

Paracoccus sp. TDMA-8 0.00E?00 1.21E?03 Inf 2.61E-26 9.20E-24

Paracoccus sp. KD58-7 0.00E?00 1.15E?03 Inf 2.64E-25 4.66E-23

Nitrincola lacisaponensis 4.56E?03 6.47E?02 0.14 2.20E-21 2.59E-19
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Table 2 continued

ID E nCount W nCount FoldChange Pval Padj

Paracoccus sp. PaH2.06a 0.00E?00 1.16E?03 Inf 1.09E-18 9.64E-17

Nitrincola sp. LAR05R3 4.49E?03 6.53E?02 0.15 2.47E-18 1.74E-16

Nitrincola sp. E-038 4.48E?03 7.66E?02 0.17 3.27E-18 1.92E-16

Nitrincola sp. LAR05R4 4.16E?03 7.24E?02 0.17 6.95E-17 3.50E-15

Umboniibacter marinipuniceus 1.01E?03 0.00E?00 0.00 1.72E-15 7.57E-14

Nitrincola sp. LAR05R7 3.90E?03 7.33E?02 0.19 6.56E-15 2.57E-13

Diaphorobacter sp.

enrichment culture clone NFL-7

3.77E?03 8.48E?02 0.22 2.96E-12 1.05E-10

Diaphorobacter sp. TPD-1 3.70E?03 8.32E?02 0.22 4.24E-12 1.36E-10

Diaphorobacter sp. F2 3.72E?03 8.49E?02 0.23 5.13E-12 1.51E-10

Loktanella cinnabarina 0.00E?00 3.89E?02 Inf 8.37E-12 2.27E-10

Diaphorobacter sp. GS-1 3.74E?03 8.80E?02 0.24 1.05E-11 2.65E-10

Ilumatobacter fluminis 3.85E?04 1.57E?04 0.41 3.39E-11 7.98E-10

Legionella sp. H052920586 3.78E?02 0.00E?00 0.00 3.63E-11 8.00E-10

Diaphorobacter sp. KOTLB 3.67E?03 8.99E?02 0.25 5.48E-11 1.09E-09

Diaphorobacter sp. PD-7 3.57E?03 8.60E?02 0.24 5.58E-11 1.09E-09

Diaphorobacter sp. bk_62 3.64E?03 9.13E?02 0.25 8.53E-11 1.58E-09

Ilumatobacter nonamiensis YM16-303 2.89E?04 1.22E?04 0.42 9.78E-11 1.73E-09

Diaphorobacter sp. Phe82 3.60E?03 8.89E?02 0.25 1.08E-10 1.81E-09

Diaphorobacter sp. P2 3.65E?03 9.40E?02 0.26 1.83E-10 2.94E-09

Diaphorobacter sp. MC-pb1 3.34E?03 8.41E?02 0.25 9.25E-10 1.42E-08

Diaphorobacter sp. R9 3.49E?03 9.31E?02 0.27 1.05E-09 1.55E-08

Diaphorobacter sp. DS3 3.72E?03 9.19E?02 0.25 1.49E-09 2.10E-08

Diaphorobacter sp. R-41385 3.36E?03 9.02E?02 0.27 3.16E-09 4.28E-08

Diaphorobacter sp. PD-12 2.95E?03 7.08E?02 0.24 3.41E-09 4.46E-08

Diaphorobacter sp. NA5 3.45E?03 9.61E?02 0.28 4.13E-09 5.21E-08

Haloferula phyci 1.54E?03 5.03E?03 3.26 8.63E-09 1.05E-07

Nitrincola sp. E-048 4.32E?02 0.00E?00 0.00 6.46E-08 7.61E-07

Loktanella sp. K4B-4 3.97E?00 2.86E?02 72.10 1.36E-05 0.00

Loktanella sp. DSSK1-5 0.00E?00 1.88E?02 Inf 2.53E-05 0.00

Loktanella sp. SS16.2 7.93E?00 3.08E?02 38.76 4.21E-05 0.00

Halomonas rifensis 2.05E?05 2.94E?05 1.43 5.39E-05 0.00

Oceanicola pacificus 2.72E?03 1.06E?03 0.39 6.09E-05 0.00

Halomonas phoceae 1.49E?05 2.09E?05 1.40 6.58E-05 0.00

Halomonas sp. Sa4-2I 6.73E?04 9.50E?04 1.41 0.00 0.00

Loktanella sp. IAJ4 0.00E?00 1.61E?02 Inf 0.00 0.00

Halomonas sp. A-7 1.90E?04 2.62E?04 1.38 0.00 0.00

Nisaea sp. MOLA 131 1.52E?02 0.00E?00 0.00 0.00 0.00

Roseovarius sp. kmb21 6.24E?03 3.51E?03 0.56 0.00 0.00

Loktanella sp. SS16.12 1.62E?01 2.98E?02 18.44 0.00 0.01

Shewanella sp. AM9 2.99E?04 3.97E?04 1.33 0.00 0.01

Marivita cryptomonadis 1.18E?03 3.06E?02 0.26 0.00 0.01

Shewanella sp. SG133 1.36E?04 1.85E?04 1.36 0.00 0.01

Polaribacter sp. p1s1 3.50E?02 5.10E?01 0.15 0.01 0.04

Loktanella sp. USW116 0.00E?00 1.16E?02 Inf 0.01 0.04
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This study from cultivable bacteria corroborated a

significant difference between low-jellyfish and high-

jellyfish areas of the lagoon, and showed a prevalence

of Shewanellaceae in the presence of jellyfish, as also

detected by our metagenomic approach. Overall,

jellyfish may influence bacterial abundance and com-

position by shifting the native microbial community

towards more opportunistic consortia with higher

metabolic potential for exploitation of mucopolysac-

charides and glycoproteins from jellyfish tissues. In

spite of considerable evidence for predation on

jellyfish tissues (e.g. Arai 2005; Milisenda et al.

2014), jellyfish are usually considered to be a low-

value biomass not easily available to higher trophic

levels and dependent on the microbial loop for

recycling (Condon et al. 2011). Overall, the observed

differences in the bacterial community might be

interpreted as an ecosystem response to allow adap-

tation of metabolic pathways to the jellyfish-derived

organic carbon substrate. The biochemical and eco-

logical characteristics of the heterotrophic bacterial

taxa that are selectively promoted in the Varano

lagoon in the areas under massive jellyfish blooms

reveal some adaptive features favoring microbial

growth and selection on jellyfish tissues or on

decaying jellyfall organic matter, as follows.

The phenotypically diverse family Halomonada-

ceae consists mostly of marine and moderately

halophilic bacteria (Arahal et al. 2008) adapted to a

wide range of salinities. Members of this family are

Gram-negative, either slight or moderate halophiles

with straight or curved, rod-shaped cells (Baumann

et al. 1983; Bouchotroch et al. 2001; Duckworth et al.

2000; Franzmann et al. 1987; Mellado et al. 1995;

Mormile et al. 1999; Quesada et al. 1984, 1990;

Valderrama et al. 1991; Vreeland et al. 1980). This

bacterial group is characterized by the production of

extracellular polymers including exopolysaccharides

(EPS), which has been described as a strategy for

growth (Costerton 1999). Studies of bacteria growing

in aquatic systems on marine sediments, aggregates

and detrital particles show that nearly all of the cells

are surrounded by EPS (Costerton 1999; Decho 1990)

and many of the cells are enclosed with adherent

biofilms. Thus, the significantly higher abundance of

Halomonadaceae in the W zone might be related to

their ability to produce EPS for adhesion to rich

particulate organic matter derived from jellyfall

aggregates. As an example, Halomonas rifensis is a

recently described species of the genus (Amjres et al.

2011). It is an EPS-producing, halophilic bacterium

capable of growth in salt concentrations (mixture of

Table 2 continued

ID E nCount W nCount FoldChange Pval Padj

Roseovarius sp. RP8 6.18E?03 3.54E?03 0.57 0.01 0.04

Corynebacterium kroppenstedtii 0.00E?00 2.17E?02 Inf 0.01 0.06

Tenacibaculum sp. 35 1.10E?03 3.61E?02 0.33 0.01 0.06

Shewanella sp. UAM38 2.36E?04 3.07E?04 1.30 0.01 0.06

Shewanella sp. W3 1.37E?04 1.77E?04 1.29 0.01 0.06

Shewanella sp. enrichment culture

clone HS-shanghai2011-1

1.55E?04 1.99E?04 1.28 0.01 0.07

Haloferula rosea 3.12E?02 9.67E?02 3.10 0.01 0.07

Lactococcus sp. TP1MK 0.00E?00 1.07E?02 Inf 0.01 0.07

Tenacibaculum sp. MGP-74/AN6 1.04E?03 3.19E?02 0.31 0.01 0.07

Tenacibaculum sp. MAR_2010_175 9.85E?02 3.19E?02 0.32 0.01 0.07

Shewanella sp. YASM-24 8.17E?03 1.08E?04 1.33 0.01 0.08

Halomonas sp. A-9 1.01E?04 1.48E?04 1.47 0.01 0.08

Shewanella sp. BJGMM-B28 1.46E?04 1.86E?04 1.27 0.02 0.09

Hydrogenophaga sp. GPTSA100-12 1.03E?02 0.00E?00 0.00 0.02 0.09

The following items are shown: the taxonomic name (ID); the normalized reads count for the E condition and W Condition (nCount);

the W/E foldChange; the p value for the statistical significance of the change (Pval); the p value adjusted for multiple testing with the

Benjamini-Hochberg procedure (Padj), which controls the False Discovery Rate (FDR \ 0.1)
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sea salts) of 0.5–20 % (weight/volume, optimum

5–7.5 % w/v), incapable of growing without NaCl,

grows at 25–45 �C (optimum 32 �C) and at pH 5–10

(optimum pH 6–9). Nevertheless, the jellyfish-associ-

ated growth of Halomonadaceae might be an indirect

consequence due to release from competition with less

tolerant prokaryotic groups. Interestingly, also in

Jellyfish Lake, Palau known for the large resident

population of Mastigias papua, members of Halomo-

nodaceae dominated among cultivable heterotrophic

bacteria (Venkateswaran et al. 1993).

The family Shewanellaceae was established from

the amended description of a group of marine Altero-

monas-like bacteria (Ivanova et al. 2004a, b, c). The

Shewanellaceae comprises Gram-negative, straight or

curved rod-shaped, aerobic or facultative anaerobic

and readily cultivated gammaproteobacteria isolated

frequently in the marine environment from diverse

sources, including red algae (Simidu et al. 1990), a

tidal flat (Yoon et al. 2004a), seawater (Ivanova et al.

2001, 2004b; Yoon et al. 2004b), sediments (Venk-

ateswaran et al. 1998) and marine invertebrates

(Ivanova et al. 2004c). In particular, Shewanella

spp., significantly abundant in the W zone, have been

recovered from red algae and are occasionally human

pathogens (Sharma and Kalawat 2010).

Although bacteria of the genus Shewanella belong

to one of the readily cultivable groups of microorgan-

isms, little is known about their occurrence and

abundance in marine ecosystems. Members of Shewa-

nella usually are found in marine environments in

warm climates or during summer in temperate

climates. One of the striking features of these bacteria

is the ability of some recently described species to

produce polyunsaturated fatty acids (PUFAs) at rela-

tively high incubation temperatures (25-30 �C; Iva-

nova et al. Ivanova et al. 2001, 2003; Skerratt et al.

2002), which contradicts the idea that only barophilic

or cold-adapted species are able to produce significant

levels of PUFAs. Notably, most of these microorgan-

isms, including several Shewanella species particu-

larly abundant in the W zone, are metabolically active

and produce a range of hydrolytic enzymes, i.e.

proteinases (gelatinases and caseinases), lipases, amy-

lases, agarases, and alginases. It is most likely that

bacteria of this genus can actively degrade organic

matter, including the gelatinous material from jelly-

falls. It is noteworthy that the genus Shewanella is part

of the normal bacterial symbiotic flora in cnidarians,

including the moon jellyfish Aurelia aurita in the

North Sea (Schuett and Doepke 2010; LaDouceur

et al. 2013).

The families Flammeovirgaceae and Saprospira-

ceae, which were more abundant in the W zone,

belong to the phylum Bacteroidetes also known as the

Bacteroides–Cytophaga–Flexibacter group. Members

of the phylum Bacteroidetes are the most abundant

bacteria in the ocean after Proteobacteria and Cyano-

bacteria (Amaral-Zettler et al. 2011; Glockner et al.

1999; Kirchman 2002). They account for a significant

fraction of marine bacterioplankton especially in

coastal areas, where they represent between 10 and

30 % of the total bacterial counts (Alonso-Saez and

Gasol 2007). Bacteroidetes are increasingly regarded

as specialists in degradation of high molecular weight

organic matter, i.e., proteins and carbohydrates

(Thomas et al. 2011) and have a preference for growth

attached to particles and surfaces, including algal

cells. Because of these features, their significant

presence in the W zone may be related to a lifestyle

as jellyfish-associated bacteria. In particular, the

family Flammeovirgaceae currently includes the gen-

era Aureibacter, Csiribacter, Fabibacter, Flam-

meovirga, Flexithrix, Fulvivirga, Limibacter.

Marivirga, Nafulsella, Perexilibacter, Persicobacter,

Porifericola, Rapidithrix, Reichenbachiella Rose-

ivirga, Sediminitomix and Tunicatimonas (Kim et al.

2013). Interestingly, among the genera determined by

DESeq, Fabibacter and Roseivirga were significantly

more abundant in the W zone. These two genera share

many phenotypic features and were previously iso-

lated together from the marine sponge Tedania ignis in

the Bahamas (Lau et al. 2006). The family Saprospir-

aceae (Yoon et al. 2012) consists of the genera

Aureispira, Haliscomenobacter, Lewinella, and Sap-

rospira found in various habitats especially as epi-

phytic protein-hydrolyzing bacteria. Large,

filamentous microorganisms are widely distributed in

freshwater lakes (Schauer and Hahn 2005) and are

believed to play an important roles there. Molecular

evidence demonstrates that members of the family

Saprospiraceae are also present in hypersaline mats

(Ley et al. 2006), and three strains of gliding bacteria

belonging to the genus Saprospira have been isolated

from marine sponges and algae from the southern

coastline of Thailand (Hosoya et al. 2006). Of these

genera, only the genus Haliscomenobacter was

detected in the W zone. Members of Bacteroidetes
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are generally associated with the degradation of

complex organic materials (Cottrell and Kirchman

2000; Reichenbach 1991; Riemann et al. 2000), but

other than Haliscomenobacter, little is known about

the detailed ecophysiology of other Saprospiraceae.

Isolates of Haliscomenobacter hydrolyze starch and

grow aerobically on glucose, N-acetylglucosamine,

lactose, and sucrose, but not on glycerol, lactate,

acetate, and succinate (van Veen et al. 1973). There-

fore, in the Varano lagoon in presence of jellyfish

bloom, members of Haliscomenobacter may be

involved in the hydrolysis of polysaccharides to utilize

the hydrolysates as energy and carbon sources for

growth. Thus, Bacteroidetes probably have a different

life strategy that do other marine bacteria, such as

Cyanobacteria (Family_II GpIIa), which are photo-

autotrophs and also were more abundant in the W

zone.

The Micrococcaceae family is composed of bacte-

ria with either respiratory and/or fermentative metab-

olism, using carbohydrate and/or amino acid

substrates, which are the main components of jellyfish

organic matter. In particular, Micrococcus, which was

significantly more abundant in the W zone, includes

ubiquitous Gram-positive bacteria species. Its pre-

sence in marine habitats has not been frequently

reported, but unspecified micrococci were described

from different seawater locations (Sieburth 1979), and

a Micrococcus sp. was reported as a commensal of the

sponge Tedania ignis (Stierle et al. 1988).

Few methodologies for Illumina-based analyses of

microbial communities have been reported to date

(Caporaso et al. 2012; Degnan and Ochman 2012;

Kozich et al. 2013). In particular, the strategy of

Caporaso et al. (2012) requires the synthesis of a large

collection of different primers as a function of the

number of samples to be tested; it was applied to

analysis of only the variable V4 region of the 16S

rRNA gene and referred to a previous single indexed

Illumina sequencing system. More recently, Kozich

et al. (2013) set up a dual index paired-read approach

based on custom primers, employing a lower number

of primer pairs during library construction. Neverthe-

less, in both approaches, the number of custom primers

depends on the number of samples and especially on

the number of regions to be tested in the same run. The

strategy adopted here, based on the Nextera Illumina

protocol and a dual-indexing principle, may overcome

those issues, because it reduces the number of primer

pairs to be used and, therefore, allows analysis of more

samples per run at reduced costs.

The above results show significant differences in

the composition of the community of bacteria and a

few microalgae, between the samples from the W and

E areas, separated by only 5–6 km, but characterized

by high numbers or near absence of jellyfish, respec-

tively. The simple experimental design of this pilot

study specifically addressed the issue of the usefulness

and reproducibility of NGS methods to rapidly obtain

point information on ecological phenomena, such as

jellyfish outbreaks, occurring within temporally lim-

ited windows. For this reason, we cannot rule out the

possibility that the observed differences in the micro-

bial structure in the water column might have preceded

the jellyfish invasion, depending on area-specific,

chemico-physical features and/or some biotic factors

(e.g. organic matter, Chl-a content) and processes

related to the structure and function of the biological

communities (e.g. primary production, predation,

competition, decomposition). Nonetheless, in spite

of strong seasonal fluctuations of most environmental

variables (as typical of confined coastal habitats), the

Varano lagoon is apparently a relatively homogeneous

basin from spatial, hydrological, and geomorpholog-

ical standpoints. Previous studies on the water column,

sediments, and biological features (organic matter,

Chl-a, phyto- and zooplankton compositions) did not

show significant differences across the lagoon and,

specifically, between the two areas (high-jellyfish vs

low-jellyfish) (Caroppo 2000; Spagnoli et al. 2002;

Specchiulli et al. 2008), which are marked by a

comparable level of confinement (e.g. in terms of

relative distance from the open sea). One remarkable

difference is the abundance of artificial structures in

the western area of the lagoon, where mussel seed

farming is common. Artificial substrates are usually

known as the preferential site of settlement of planula

larvae and their development into the polyp stage

(Holst and Jarms 2007; Lo et al. 2008). The jellyfish

spatial segregation might also be favoured by the

jellyfish aggregative locomotion, actively directed

against the water flow (Rakow and Graham 2006). The

lack of consistent data corroborating alternative

explanations, and the relative spatial homogeneity of

the Varano lagoon both indirectly suggest that jellyfish

outbreaks can be considered at least one of the main

drivers of the microbial community differences

between the two areas.
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To our knowledge, this is the first time that a NGS

platform has been used to screen changes of the

aquatic microbiome associated with the proliferation

of an invasive alien species. Here we valuated the

potential of NGS analysis for assessing the impact of

jellyfish outbreaks on carbon flow in aquatic food

webs and ecosystem functioning, promisingly offering

additional perspectives for the use of NGS methods in

ecological investigations. Invasive jellyfish species

producing large outbreaks in coastal ecosystems may

have significant impacts on bacterial population

dynamics and nutrient pathways with major ecological

implications. The use of fast and sensitive methodol-

ogies, such as Illumina-based sequencing surveys, will

allow rapidly gaining major insights into the func-

tioning of coastal ecosystems and adopting the best

practices for management and valuation of coastal

habitats and their living resources.
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