7 research outputs found

    Addition of N-nucleophiles to gold(III)-bound isocyanides leading to short-lived gold(III) acyclic diaminocarbene complexes

    Get PDF
    Addition of hydrazone to gold(iii)ā€“isocyanides led to the generation of rare short-lived gold(iii) acyclic diaminocarbene complexes.</p

    Tetrazol-5-ylidene Gold(III) Complexes from Sequential [2+3] Cycloaddition of Azide to Metal-Bound Isocyanides and N4 Alkylation

    No full text
    The reaction between equimolar amounts of the isocyanide complexes [AuCl<sub>3</sub>(<u>C</u>NR)] [R = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (Xyl), <b>1a</b>; 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub> (Mes), <b>1b</b>; Cy, <b>1c</b>; <i>t-</i>Bu, <b>1d</b>] and tetrabutylammonium azide (<b>2</b>) proceeds in CH<sub>2</sub>Cl<sub>2</sub> at room temperature for āˆ¼10 min to furnish the goldĀ­(III) tetrazolates [<i>n</i>-Bu<sub>4</sub>N]Ā­[AuCl<sub>3</sub>(<u>C</u>N<sub>4</sub>R)] (<b>3a</b>ā€“<b>d</b>), which were obtained in 89ā€“95% yields after purification. Subsequent reaction between equimolar amounts of <b>3a</b>ā€“<b>d</b> and methyl trifluoromethanesulfonate (MeOTf) proceeds in CH<sub>2</sub>Cl<sub>2</sub> at āˆ’70 Ā°C for āˆ¼30 min to give the corresponding goldĀ­(III) complexes [AuCl<sub>3</sub>(C<sup><i>a</i></sup>NĀ­(Me)Ā­N<sub>2</sub>N<sup><i>b</i></sup>R)]<sup><i>aā€“b</i></sup> (<b>5a</b>ā€“<b>d</b>) bearing 1,4-disubstituted tetrazol-5-ylidene ligands (69ā€“75%). Complexes <b>3a</b>ā€“<b>d</b> were obtained as pale-yellow solids and characterized by elemental analyses (C, H, N), HRESI<sup>ā€“</sup>-MS, FTIR, and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopies. Complexes <b>5a</b>ā€“<b>d</b> were obtained as colorless solids and characterized by elemental analyses (C, H, N), HRESI<sup>+</sup>-MS, and 1D (<sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H}) and 2D (<sup>1</sup>H,<sup>13</sup>C-HMBC) NMR spectroscopies. In addition, the structures of <b>3a</b>, <b>3b</b>, <b>3c</b>, and <b>5a</b> were established by single-crystal X-ray diffraction. Analysis of the Wiberg bond indices (WI) for gas phase-optimized model structures of <b>3a</b>ā€“<b>c</b> and <b>5a</b> computed using the natural bond orbital (NBO) partitioning scheme disclosed a higher degree of electron density delocalization in the CN<sub>4</sub> moiety of carbene <b>5a</b> when compared to tetrazolate <b>3a</b>ā€“<b>c</b>. Results of DFT calculations for a model system reveal that the mechanism for the cycloaddition of an azide to the isocyanide ligand in [AuCl<sub>3</sub>(CNMe)] is stepwise and involves nucleophilic attack of N<sub>3</sub><sup>ā€“</sup> on the N atom of CNMe followed by ring closure. The addition is both kinetically and thermodynamically favorable and occurs via the formation of an acyclic NNNCN intermediate, whereas the cyclization is the rate-determining step

    1,3-Dipolar Cycloaddition of Nitrones to Gold(III)-Bound Isocyanides

    No full text
    Treatment of goldĀ­(III)-isocyanides [AuCl<sub>3</sub>(CNR<sup>1</sup>)] (R<sup>1</sup> = Xyl <b>1</b>, Cy <b>2</b>, Bu<sup><i>t</i></sup> <b>3</b>) with an equimolar amount of 5,5-dimethyl-1-pyrroline-<i>N</i>-oxide (<b>4</b>) in CH<sub>2</sub>Cl<sub>2</sub> at āˆ’74 Ā°C leads to the generation of the heterocyclic aminocarbene species [AuCl<sub>3</sub>{CĀ­(ON<sup><i>a</i></sup>CMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C<sup><i>b</i></sup>H)ī—»N<sup><i>e</i></sup>R<sup>1</sup>}Ā­(N<sup><i>a</i></sup>ā€“C<sup><i>b</i></sup>)Ā­(C<sup><i>b</i></sup>ā€“N<sup><i>e</i></sup>)] <b>8</b> (for R<sup>1</sup> = Bu<sup><i>t</i></sup>) or goldĀ­(III) complexes <i>cis</i>-[AuCl<sub>2</sub>{N<sup><i>a</i></sup>(CMe<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C<sup><i>b</i></sup>N<sup><i>e</i></sup>R<sup>1</sup>)Ā­C<sup><i>d</i></sup>ī—»O}Ā­(N<sup><i>a</i></sup>ī—»C<sup><i>b</i></sup>)Ā­(N<sup><i>e</i></sup>ā€“C<sup><i>d</i></sup>)] <b>9</b> and <b>10</b> (for R<sup>1</sup> = Xyl and Cy) in good isolated yields (75ā€“87%). DFT calculations show that deprotonation of the endocyclic CH group in the carbene ligand leads to spontaneous Nā€“O bond cleavage, and acidity of this group is a factor controlling the different chemical behavior of <b>1</b>ā€“<b>3</b> depending on the nature of substituent R<sup>1</sup>. The reaction of equimolar amounts of the aldonitrone <i>p</i>-TolCHī—»N<sup>+</sup>(Me)Ā­O<sup>ā€“</sup> (<b>5</b>) or the ketonitrones Ph<sub>2</sub>Cī—»N<sup>+</sup>(R<sup>2</sup>)Ā­O<sup>ā€“</sup> (R<sup>2</sup> = Ph <b>6</b>, CH<sub>2</sub>Ph <b>7</b>) with <b>1</b>ā€“<b>3</b> in CD<sub>2</sub>Cl<sub>2</sub> at āˆ’70 Ā°C in air (or under N<sub>2</sub>) revealed the formation of the carbene complexes [AuCl<sub>3</sub>{CĀ­(ONMeC<sup><i>a</i></sup>H-<i>p</i>-Tol)ī—»N<sup><i>b</i></sup>R<sup>1</sup>}Ā­(C<sup><i>a</i></sup>ā€“N<sup><i>b</i></sup>)] (R<sup>1</sup> = Cy <b>11</b>, Xyl <b>12</b>, Bu<sup><i>t</i></sup> <b>13</b>), [AuCl<sub>3</sub>{CĀ­(ONPhC<sup><i>a</i></sup>Ph<sub>2</sub>)ī—»N<sup><i>b</i></sup>R<sup>1</sup>}Ā­(C<sup><i>a</i></sup>ā€“N<sup><i>b</i></sup>)] (R<sup>1</sup> = Cy <b>14</b>, Bu<sup><i>t</i></sup> <b>15</b>), or [AuCl<sub>3</sub>{CĀ­(ONĀ­(CH<sub>2</sub>Ph)Ā­C<sup><i>a</i></sup>Ph<sub>2</sub>)ī—»N<sup><i>b</i></sup>R<sup>1</sup>}Ā­(C<sup><i>a</i></sup>ā€“N<sup><i>b</i></sup>)] (R<sup>1</sup> = Cy <b>16</b>, Xyl <b>17</b>), as studied by <sup>1</sup>H NMR. The reaction of <b>6</b> with <b>1</b> and of <b>7</b> with <b>3</b> did not furnish carbene products. Compounds <b>8</b>ā€“<b>10</b> were characterized by ESI-MS, IR, 1D (<sup>1</sup>H, <sup>13</sup>CĀ­{H}) and 2D (<sup>1</sup>H,<sup>1</sup>Hā€“COSY, <sup>1</sup>H,<sup>13</sup>C-HSQC, <sup>1</sup>H,<sup>13</sup>C-HMBC) NMR spectroscopic techniques, and, only for <b>8</b>, elemental analyses (C, H, N), while compounds <b>11</b>ā€“<b>17</b> were characterized by 1D (<sup>1</sup>H, <sup>13</sup>CĀ­{H}) and 2D (<sup>1</sup>H,<sup>13</sup>C-HSQC) NMR. Structures of compounds <b>8</b>, <b>9</b>, and <b>13</b> were additionally established by single-crystal X-ray diffraction
    corecore