2 research outputs found

    Evolutionary origins of abnormally large shoot sodium accumulation in non-saline environments within the Caryophyllales

    Get PDF
    The prevalence of sodium (Na) “hyperaccumulator” species, which exhibit abnormally large shoot sodium concentrations ([Na]shoot) when grown in non-saline environments, was investigated among angiosperms in general and within the Caryophyllales order in particular. Shoot Na concentrations were determined in 334 angiosperm species, representing 35 orders, grown hydroponically in a non-saline solution. Many Caryophyllales species exhibited abnormally large [Na]shoot when grown hydroponically in a non-saline solution. The bimodal distribution of the log-normal [Na]shoot of species within the Caryophyllales suggested at least two distinct [Na]shoot phenotypes within this order. Mapping the trait of Na-hyperaccumulation onto the phylogenetic relationships between Caryophyllales families, and between subfamilies within the Amaranthaceae, suggested that the trait evolved several times within this order: in an ancestor of the Aizoaceae, but not the Phytolaccaceae or Nyctaginaceae, in ancestors of several lineages formerly classified as Chenopodiaceae, but not in the Amaranthaceae sensu stricto, and in ancestors of species within the Cactaceae, Portulacaceae, Plumbaginaceae,Tamaricaceae and Polygonaceae. In conclusion, a disproportionate number of Caryophyllales species behave as Na51 hyperaccumulators and multiple evolutionary origins of this trait can be identified within this order

    Variation in the angiosperm ionome

    Get PDF
    The ionome is defined as the elemental composition of a subcellular structure, cell, tissue, organ or organism. The subset of the ionome comprising mineral nutrients is termed the functional ionome. A ‘standard functional ionome’ of leaves of an ‘average’ angiosperm, defined as the nutrient composition of leaves when growth is not limited by mineral nutrients, is presented and can be used to compare the effects of environment and genetics on plant nutrition. The leaf ionome of a plant is influenced by interactions between its environment and genetics. Examples of the effects of the environment on the leaf ionome are presented and the consequences of nutrient deficiencies on the leaf ionome are described. The physiological reasons for (1) allometric relationships between leaf nitrogen and phosphorus concentrations and (2) linear relationships between leaf calcium and magnesium concentrations are explained. It is noted that strong phylogenetic effects on the mineral composition of leaves of angiosperm species are observed even when sampled from diverse environments. The evolutionary origins of traits including (1) the small calcium concentrations of Poales leaves, (2) the large magnesium concentrations of Caryophyllales leaves, and (3) the large sulfur concentrations of Brassicales leaves are traced using phylogenetic relationships among angiosperm orders, families and genera. The rare evolution of hyperaccumulation of toxic elements in leaves of angiosperms is also described. Consequences of variation in the leaf ionome for ecology, mineral cycling in the environment, strategies for phytoremediation of contaminated land, sustainable agriculture, and the nutrition of livestock and humans are discussed
    corecore