214 research outputs found

    Bergmann\u27s Clines in Ectotherms: Illustrating a Life-History Perspective with Sceloporine Lizards

    Get PDF
    The generality and causes of Bergmann\u27s rule have been debated vigorously in the last few years, but Bergmann\u27s clines are rarely explained in the context of life-history theory. We used both traditional and phylogenetic comparative analyses to explore the causes of latitudinal and thermal clines in the body size of the eastern fence lizard (Sceloporus undulatus). The proximate mechanism for larger body sizes in colder environments is delayed maturation, which results in a greater fecundity but a lower survival to maturity. Life-history theory predicts that a higher survivorship of juveniles in colder environments can favor the evolution of a Bergmann\u27s cline. Consistent with this theory, lizards in colder environments survive better as juveniles and delay maturation until reaching a larger body size than that of lizards in warmer environments. We expect similar relationships among temperature, survivorship, and age/size at maturity exist in other ectotherms that exhibit Bergmann\u27s clines. However, life-history traits of S. undulatus were more strongly related to latitude than they were to temperature, indicating that both abiotic and biotic factors should be considered as causes of Bergmann\u27s clines. Nonetheless, analyses of the costs and benefits of particular body sizes in different thermal environments will enhance our understanding of geographic variation

    Utility of Doppler-Ultrasound and Liver Elastography in the Evaluation of Patients with Suspected Pregnancy-Related Liver Disease

    Get PDF
    Grayscale abdomen ultrasound (US) is routinely performed in pregnant women with suspected pregnancy-related liver dysfunction, but its diagnostic yield is very low. We aimed to investigate the association between Doppler-US findings, liver stiffness measurement (LSM) and different causes of pregnancy-related liver dysfunction. This is a prospective cohort study of pregnant women referred to our tertiary center for any suspected gastrointestinal disease between 2017 and 2019 and undergoing Doppler-US and liver elastography. Patients with previous liver disease were excluded from the analysis. For group comparisons of categorical and continuous variables, the chi-square test or Mann-Whitney test, and the McNemar test were used, as appropriate. A total of 112 patients were included in the final analysis, of whom 41 (36.6%) presented with suspected liver disease: 23 intrahepatic cholestasis of pregnancy (ICP), six with gestational hypertensive disorders and 12 cases with undetermined causes of elevated liver enzymes. Values of LSM were higher and significantly associated with a diagnosis of gestational hypertensive disorder (AUROC = 0.815). No significant differences at Doppler-US or LSM were found between ICP patients and controls. Patients with undetermined causes of hypertransaminasemia showed higher hepatic and splenic resistive indexes than controls, suggesting splanchnic congestion. The evaluation of Doppler-US and liver elastography is clinically useful in patients with suspected liver dysfunction during pregnancy. Liver stiffness represents a promising non-invasive tool for the assessment of patients with gestational hypertensive disorders

    Macrosystems ecology: Understanding ecological patterns and processes at continental scales

    Get PDF
    Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents

    Thermal Variability Increases the Impact of Autumnal Warming and Drives Metabolic Depression in an Overwintering Butterfly

    Get PDF
    Increases in thermal variability elevate metabolic rate due to Jensen's inequality, and increased metabolic rate decreases the fitness of dormant ectotherms by increasing consumption of stored energy reserves. Theory predicts that ectotherms should respond to increased thermal variability by lowering the thermal sensitivity of metabolism, which will reduce the impact of the warm portion of thermal variability. We examined the thermal sensitivity of metabolic rate of overwintering Erynnis propertius (Lepidoptera: Hesperiidae) larvae from a stable or variable environment reared in the laboratory in a reciprocal common garden design, and used these data to model energy use during the winters of 1973–2010 using meteorological data to predict the energetic outcomes of metabolic compensation and phenological shifts. Larvae that experienced variable temperatures had decreased thermal sensitivity of metabolic rate, and were larger than those reared at stable temperatures, which could partially compensate for the increased energetic demands. Even with depressed thermal sensitivity, the variable environment was more energy-demanding than the stable, with the majority of this demand occurring in autumn. Autumn phenology changes thus had disproportionate influence on energy consumption in variable environments, and variable-reared larvae were most susceptible to overwinter energy drain. Therefore the energetic impacts of the timing of entry into winter dormancy will strongly influence ectotherm fitness in northern temperate environments. We conclude that thermal variability drives the expression of metabolic suppression in this species; that phenological shifts will have a greater impact on ectotherms in variable thermal environments; and that E. propertius will be more sensitive to shifts in phenology in autumn than in spring. This suggests that increases in overwinter thermal variability and/or extended, warm autumns, will negatively impact all non-feeding dormant ectotherms which lack the ability to suppress their overwinter metabolic thermal sensitivity

    Mothers Matter Too: Benefits of Temperature Oviposition Preferences in Newts

    Get PDF
    The maternal manipulation hypothesis states that ectothermic females modify thermal conditions during embryonic development to benefit their offspring (anticipatory maternal effect). However, the recent theory suggests that the ultimate currency of an adaptive maternal effect is female fitness that can be maximized also by decreasing mean fitness of individual offspring. We evaluated benefits of temperature oviposition preferences in Alpine newts (Ichthyosaura [formerly Triturus] alpestris) by comparing the thermal sensitivity of maternal and offspring traits across a range of preferred oviposition temperatures (12, 17, and 22°C) and by manipulating the egg-predation risk during oviposition in a laboratory thermal gradient (12–22°C). All traits showed varying responses to oviposition temperatures. Embryonic developmental rates increased with oviposition temperature, whereas hatchling size and swimming capacity showed the opposite pattern. Maternal oviposition and egg-predation rates were highest at the intermediate temperature. In the thermal gradient, females oviposited at the same temperature despite the presence of caged egg-predators, water beetles (Agabus bipustulatus). We conclude that female newts prefer a particular temperature for egg-deposition to maximize their oviposition performance rather than offspring fitness. The evolution of advanced reproductive modes, such as prolonged egg-retention and viviparity, may require, among others, the transition from selfish temperature preferences for ovipositon to the anticipatory maternal effect

    Impact of Tail Loss on the Behaviour and Locomotor Performance of Two Sympatric Lampropholis Skink Species

    Get PDF
    Caudal autotomy is an anti-predator behaviour that is used by many lizard species. Although there is an immediate survival benefit, the subsequent absence of the tail may inhibit locomotor performance, alter activity and habitat use, and increase the individuals' susceptibility to future predation attempts. We used laboratory experiments to examine the impact of tail autotomy on locomotor performance, activity and basking site selection in two lizard species, the delicate skink (Lampropholis delicata) and garden skink (L. guichenoti), that occur sympatrically throughout southeastern Australia and are exposed to an identical suite of potential predators. Post-autotomy tail movement did not differ between the two Lampropholis species, although a positive relationship between the shed tail length and distance moved, but not the duration of movement, was observed. Tail autotomy resulted in a substantial decrease in sprint speed in both species (28–39%), although this impact was limited to the optimal performance temperature (30°C). Although L. delicata was more active than L. guichenoti, tail autotomy resulted in decreased activity in both species. Sheltered basking sites were preferred over open sites by both Lampropholis species, although this preference was stronger in L. delicata. Caudal autotomy did not alter the basking site preferences of either species. Thus, both Lampropholis species had similar behavioural responses to autotomy. Our study also indicates that the impact of tail loss on locomotor performance may be temperature-dependent and highlights that future studies should be conducted over a broad thermal range
    corecore