100 research outputs found

    Europium(III) Macrocyclic Chelates Appended with Tyrosine-based Chromophores and Di-(2-picolyl)amine-based Receptors: Turn-On Luminescent Chemosensors Selective to Zinc(II) Ions

    Get PDF
    [Abstract] Zinc ions play an important role in many biological processes in the human body. To selectively detect Zn²⁺, two EuDO3A‐based complexes (DO3A=1,4,7,10‐tetraazacyclododecane‐1,4,7‐tricarboxylic acid) appended with tyrosine as a chromophore and di‐(2‐picolyl)amine (DPA) as the Zn²⁺ recognition moiety were developed as suitable luminescent sensors. Their luminescence intensity is affected by the photoinduced electron transfer mechanism. Upon addition of Zn²⁺, both probes display an up to sevenfold enhancement in Eu³⁺ emission. Competition experiments demonstrated their specificity toward Zn²⁺ over other metal ions, while also revealing the nonspecificity of the derivatives lacking the DPA‐moiety, thus confirming the essential role of the DPA for the recognition of Zn²⁺. The induced emission changes of Eu³⁺ allow for precise quantitative analysis of Zn²⁺, establishing these lanthanide‐based complexes as viable chemosensors for biological applications.German Research Foundation; AN 716/7-

    In-depth study of a novel class of ditopic gadolinium(III)-based MRI probes sensitive to zwitterionic neurotransmitters

    Get PDF
    [Abstract] The efficacy of Gd-based low-molecular weight ditopic MRI probes on binding zwitterionic neurotransmitters (ZNTs) relies on their structural compatibility. ZNTs are challenging biomarkers for monitoring chemical neurotransmission due to their intrinsic complexity as target molecules. In this work, we focus on tuning the cyclen- and azacrown ether-based binding sites properties to increase the affinity toward ZNTs. Our approach consisted in performing structural modifications on the binding sites in terms of charge and size, followed by the affinity evaluation through T1-weighted relaxometric titrations. We prepared and investigated six Gd3+ complexes with different structures and thus properties, which were found to be acetylcholine insensitive; moreover, two of them displayed considerably stronger affinity toward glutamate and glycine over hydrogencarbonate and other ZNTs. Complexes with small and non-charged or no substituents on the azacrown moiety displayed the highest affinities toward ZNTs, followed by strong decrease in longitudinal relaxivity r1 of around 70%. In contrast, hosts with negatively charged substituents exhibited lower decrease in r1 of nearly 30%. The thorough investigations involving relaxometric titrations, luminescence, and NMR diffusion experiments, as well as theoretical density functional theory calculations, revealed that the affinity of reported hosts toward ZNTs is greatly affected by the remote pendant on the azacrown derivative.German Research Foundation; AN 716/7-

    Synthetic strategies for preparation of cyclen-based MRI contrast agents

    Get PDF
    AbstractCyclen-based macrocyclic ligands have an essential role in the development of contrast agents for magnetic resonance imaging (MRI). A prevailing need for preparation of multifunctional probes triggered a number of attempts to synthesize and derivatize ligands which efficiently chelate lanthanide ions and have advantageous MRI properties. This digest Letter summarizes the most common synthetic approaches for the preparation of macrocyclic ligands based on cyclen depending on the desired application

    Investigations into the effects of linker length elongation on the behaviour of calcium-responsive MRI probes

    Get PDF
    [Abstract] Understanding the relationship between chemical structure and the effectiveness of bioresponsive magnetic resonance imaging (MRI) contrast agents can offer help to identify key components required for the future development of such probes. Here, we report the development and characterisation of two novel monomeric bifunctional chelators, L1 and L2, whose paramagnetic metal complexes can serve as calcium-responsive contrast agents. Specifically, relaxometric titrations, luminescence lifetime measurements, high resolution NMR and diffusion experiments, as well as density functional theory (DFT) calculations were carried out to assess the behaviour of each system. Minor structural differences between the probes resulted from the extension of the linker between the macrocyclic lanthanide chelator and the acyclic Ca-binding moiety. Relaxometric titrations of both systems, GdL1 and GdL2, showed an increase in r1 and r2 relaxivity upon Ca2+ addition, with the derivative bearing the longer linker showing a greater overall change. The hydration states of the europium analogues were assessed revealing a higher initial hydration state for EuL2. Diffusion ordered NMR spectroscopy revealed negligible changes in the diffusive properties of both systems upon the addition of Ca2+, while NMR studies of the Y3+, Yb3+ and Eu3+ analogues provided further insights into the structural behaviour of the linker unit in both the unsaturated and Ca-saturated states. DFT calculations supported the different coordination modes of the studied paramagnetic complexes in the presence and absence of Ca2+. Overall, our findings demonstrate the impact of subtle changes to the structure of such probes, affecting a range of properties and their coordination behaviour.German Research Foundation; AN 716/7-

    Synthesis and characterisation of bismacrocyclic DO3A-amide derivatives – an approach towards metal-responsive PARACEST agents

    Get PDF
    [Abstract] Three new bismacrocyclic Ln3+ chelates consisting of triamide derivatives of cyclen with glycine, methyl and tert-butyl substituents (L1–3, respectively) linked to an acyclic EGTA-derived calcium chelator were synthesised as potential MRI contrast agents (EGTA – ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid). Eu3+ and Yb3+ complexes of L1–3 were investigated as chemical exchange saturation transfer (CEST) agents. Moderate to minor CEST effects were observed for Eu2L1, Eu2L2 and Yb2L2 complexes in the absence of Ca2+, with negligible changes upon addition of this metal ion. Luminescence steady-state emission and lifetime experiments did not reveal any changes in the coordination environment of the complexes, while the number of inner-sphere water molecules remained constant in the absence and presence of Ca2+. The protonation constants of Eu2L1 and Eu2L2 and stability constants of their complexes with Ca2+, Mg2+ and Zn2+ were determined by means of potentiometric titrations. The results show that the charge of the complex dramatically affects the protonation constants of the EGTA-binding unit. The stability constants of the complexes formed with Ca2+, Mg2+ and Zn2+ are several orders of magnitude lower than those of EGTA. These findings indicate that the nature of Ln3+ chelates and their charge are the main reasons for the observed results and weaker response of these EGTA-derived triamide derivatives compared to their tricarboxylate analogues

    Exploring the hyperpolarisation of EGTA-based ligands using SABRE

    Get PDF
    The design of molecules whose magnetic resonance (MR) signals report on their biological environment is receiving attention as a route to non-invasive functional MR. Hyperpolarisation techniques improve the sensitivity of MR and enable real time low concentration MR imaging, allowing for the development of novel functional imaging methodologies. In this work, we report on the synthesis of a series of EGTAderived molecules (EGTA – ethylene glycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid), whose core structures are known to bind biologically relevant metal ions in vivo, in addition to pyridyl rings that allow reversible ligation to an iridium dihydride complex. Consequently, they are amenable to hyperpolarisation through the parahydrogen-based signal amplification by reversible exchange (SABRE) process. We investigate how the proximity of EGTA and pyridine units, and the identity of the linker group, affect the SABRE hyperpolarisation attained for each agent. We also describe the effect of catalyst identity and coligand presence on these measurements and can achieve 1H NMR signal enhancements of up to 160-fold. We rationalise these results to suggest the design elements needed for probes amenable to SABRE hyperpolarisation whose MR signals might in the future report on the presence of metal ions

    Spectrally undiscerned isomers might lead to erroneous determination of water exchange rates of paraCEST Eu(III) agents

    Get PDF
    [Abstract] We report a detailed study of the solution structure and water exchange rate of a Eu(III) complex with the cyclen-based ligand L1, containing (S)-2-(2-acetamido)-3-(4 (trifluoromethyl)phenyl)propanoate pendant arms at positions 1 and 7 of the cyclen ring and acetylglycinate pendants at positions 4 and 10. The EuL1 complex was characterized by a combination of NMR and luminescence spectroscopy and density functional theory (DFT) calculations. The chemical exchange saturation transfer (CEST) spectra obtained at different temperatures and saturation powers present a CEST signal attributed to the coordinated water molecule. However, the spectra recorded at low temperatures (10 °C) and low saturation powers revealed the presence of two different species with coordinated water molecules having very similar chemical shifts. Determination of the water exchange rates of the coordinated water molecules was carried out by using the Bloch four-pool model that accounts for the presence of these isomers, and this model was compared to conventional methods for CEST quantification, namely the Omega plot and QUESP (quantification of exchange rate as a function of saturation power), which assume the presence of a single CEST active species. The results indicated that only the four-pool Bloch equations provide reasonable water exchange rates and activation parameters. Solution NMR studies and DFT calculations indicated that the two isomers present in solution correspond to the SS-Δ(λλλλ) and SS-Λ(δδδδ) isomers, which present capped square-antiprismatic (SAP) coordination environments. Additional NMR studies on the EuL2 and EuL3complexes, which present four (S)-2-(2-acetamido)-3-(4-(trifluoromethyl)phenyl)propanoate or acetylglycinate pendant arms, respectively, confirm the results obtained for EuL1.Ministerio de Economía y Competitivad; CTQ2015-71211-REDTMinisterio de Economía y Competitivad; CTQ2013-43243-PGerman Research Foundation; ZA 814/2-

    Towards extracellular Ca2+ sensing by MRI: synthesis and calcium-dependent 1H and 17O relaxation studies of two novel bismacrocyclic Gd3+ complexes

    Get PDF
    Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction

    Inert macrocyclic Eu3+ complex with affirmative paraCEST features

    Get PDF
    [Abstract]: We report on a macrocyclic platform based on an 18-membered macrocycle that forms kinetically highly inert paramagnetic complexes and possesses an excellent outlook for the development of bioresponsive paraCEST (paramagnetic chemical exchange saturation transfer) contrast agents. The investigated europium( III) chelate is non-hydrated and contains four amide groups, each possessing two paramagnetically shifted proton resonances distant from bulk water. The X-ray crystal structure and solution studies indicate that the metal ion is ten-coordinated, being directly bound to the six N atoms of the macrocycle and the four amide O atoms of the pendant arms. The complex presents an excellent inertness with respect to dissociation, being stable under a variety of harsh conditions, including highly acidic and basic media or elevated temperatures. The amide protons are in slow-to-intermediate exchange with bulk water, which gives rise to the generation of a strong CEST effect at low probe concentration and saturation powers (∼25% at 5 mM, B1 = 5 μT, 37 °C). We demonstrate the potential of this platform for mapping pH in its microenvironment and foresee potential for the development of diverse paraCEST probes and sensors.Ministerio de Economía y Competitividad; CTQ2016-76756-PXunta de Galicia; ED431B 2017/59Xunta de Galicia; ED431D 2017/01German Research Foundation; ZA 814/2-
    corecore