1,262 research outputs found

    Liquid-liquid phase transition in Stillinger-Weber silicon

    Full text link
    It was recently demonstrated that the Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell, Nature Materials 2, 739 (2003)). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5 %. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.Comment: 13 page

    A lattice mesoscopic model of dynamically heterogeneous fluids

    Full text link
    We introduce a mesoscopic three-dimensional Lattice Boltzmann Model which attempts to mimick the physical features associated with cage effects in dynamically heterogeneous fluids. To this purpose, we extend the standard Lattice Boltzmann dynamics with self-consistent constraints based on the non-local density of the surrounding fluid. The resulting dynamics exhibits typical features of dynamic heterogeneous fluids, such as non-Gaussian density distributions and long-time relaxation. Due to its intrinsically parallel dynamics, and absence of statistical noise, the method is expected to compute significantly faster than molecular dynamics, Monte Carlo and lattice glass models.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Finite-temperature critical point of a glass transition

    Full text link
    We generalize the simplest kinetically constrained model of a glass-forming liquid by softening kinetic constraints, allowing them to be violated with a small finite rate. We demonstrate that this model supports a first-order dynamical (space-time) phase transition, similar to those observed with hard constraints. In addition, we find that the first-order phase boundary in this softened model ends in a finite-temperature dynamical critical point, which we expect to be present in natural systems. We discuss links between this critical point and quantum phase transitions, showing that dynamical phase transitions in dd dimensions map to quantum transitions in the same dimension, and hence to classical thermodynamic phase transitions in d+1d+1 dimensions. We make these links explicit through exact mappings between master operators, transfer matrices, and Hamiltonians for quantum spin chains.Comment: 10 pages, 5 figure

    Intra-molecular coupling as a mechanism for a liquid-liquid phase transition

    Get PDF
    We study a model for water with a tunable intra-molecular interaction JσJ_\sigma, using mean field theory and off-lattice Monte Carlo simulations. For all Jσ0J_\sigma\geq 0, the model displays a temperature of maximum density.For a finite intra-molecular interaction Jσ>0J_\sigma > 0,our calculations support the presence of a liquid-liquid phase transition with a possible liquid-liquid critical point for water, likely pre-empted by inevitable freezing. For J=0 the liquid-liquid critical point disappears at T=0.Comment: 8 pages, 4 figure

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed {\it via} computer simulations of a model liquid. The results obtained indicate that the liquid - gas spinodal and the glass transition lines intersect at a finite temperature, implying a glass - gas mechanical instability locus at low temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well with each other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Anisotropic thermally activated diffusion in percolation systems

    Full text link
    We present a study of static and frequency-dependent diffusion with anisotropic thermally activated transition rates in a two-dimensional bond percolation system. The approach accounts for temperature effects on diffusion coefficients in disordered anisotropic systems. Static diffusion shows an Arrhenius behavior for low temperatures with an activation energy given by the highest energy barrier of the system. From the frequency-dependent diffusion coefficients we calculate a characteristic frequency ωc1/tc\omega_{c}\sim 1/t_{c}, related to the time tct_c needed to overcome a characteristic barrier. We find that ωc\omega_c follows an Arrhenius behavior with different activation energies in each direction.Comment: 5 pages, 4 figure

    Vortex Glass and Vortex Liquid in Oscillatory Media

    Get PDF
    We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    A ferromagnet with a glass transition

    Full text link
    We introduce a finite-connectivity ferromagnetic model with a three-spin interaction which has a crystalline (ferromagnetic) phase as well as a glass phase. The model is not frustrated, it has a ferromagnetic equilibrium phase at low temperature which is not reached dynamically in a quench from the high-temperature phase. Instead it shows a glass transition which can be studied in detail by a one step replica-symmetry broken calculation. This spin model exhibits the main properties of the structural glass transition at a solvable mean-field level.Comment: 7 pages, 2 figures, uses epl.cls (included
    corecore