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Vortex Glass and Vortex Liquid in Oscillatory Media
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We study the disordered, multispiral solutions of two-dimensional oscillatory media for parameter
values at which the single-spiral/vortex solution is fully stable. Using the complex Ginzburg-Landau
(CGLE) equation, we show that these states, heretofore believed to be static, actually evolve extremely
slowly. This is achieved via a reduction of the CGLE to the evolution of the sole vortex coordinates. This
true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal
diffusion of spirals, and a slowly relaxing, intermittent, ‘‘vortex glass.’’
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studies revealed a wide variety of striking dynamical
phenomena in one, two, and three space dimensions,

where the single-spiral solution is stable [2–4]. Rather
little is known about these cellular structures except that
Spiral waves are ubiquitous in oscillatory and excitable
two-dimensional active media [1]. Their cores are robust
wave sources which determine the oscillating frequency
of the entire system and may dominate the surrounding
dynamics. Spirals (often called vortices) may spontane-
ously appear and annihilate in a typical manifestation of
spatiotemporal chaos. When the single-spiral solution is
stable, one easily observes locked, quasifrozen, multi-
spiral disordered structures whose glassy character has
been suggested [2–4]. Despite being found in most mod-
els of excitable or oscillatory media as well as in experi-
ments (Belousov-Zhabotinskii reaction [5], surface
growth [6], and others), surprisingly very little is known
about the properties of these disordered states and the
transitions leading to their formation.

In this Letter we investigate, in the framework of the
complex Ginzburg-Landau equation (CGLE), the general
issue of these multispiral solutions and show that they
actually evolve on ultraslow time scales. This is achieved
thanks both to long numerical simulations of the CGLE
and to a quantitatively correct reduction of the dynamics
to the evolution of the sole vortex position and phase
coordinates. This true defect-mediated turbulence occurs
in two distinct phases, a vortex liquid characterized by
normal diffusion of individual spirals and a slowly relax-
ing, intermittent,‘‘vortex glass.’’

The CGLE describes most properties of generic oscil-
latory media, at least at a qualitative level, even if one is
not in the vicinity of a supercritical long-wavelength
Hopf bifurcation, where it can be systematically derived
(for reviews, see [7,8]). Under appropriate scaling of the
physical variables, it takes the universal form

@tA � A� �1� ic�jAj2A� �1� ib��A; (1)

where A is a complex amplitude, b and c are real parame-
ters characterizing relative dispersion and nonlinear fre-
quency shift, and � is the Laplace operator. Intensive
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many of which were also observed in various experimen-
tal contexts, sometimes up to a quantitative agreement
with CGLE predictions (see, e.g., [9]).

A distinctive feature of the two-dimensional CGLE is
the existence of nontrivial sources of spiral waves (vor-
tices) which determine the oscillating frequency of the
entire system [10]. The single-spiral solution for a vortex
centered at r0 reads as [11,12]

As�r; t� � F�r� expfi�m��  �r� �!t��	g; (2)

where r � jr� r0j, � is the polar angle measured from
the vortex core, � is an arbitrary phase, and m � �1
is the topological charge. Far away from the core, the
solution approaches a plane wave with  �r� ’ kr, where
the asymptotic wave number k is related to the rotation
frequency as ! � �c� �b� c�k2. The dependence of k
on b and c is known analytically for jb� cj 
 1 and
jb� cj � 1, e.g., k ’ �c�1 exp���=j2cj� for b � 0 and
jcj 
 1 [11]. In the parameter region where the single-
spiral solution is stable and c � b, the interaction between
two well-separated spirals falls off exponentially [12–14].
The screening was attributed to the shock lines where the
waves emitted by the cores collide. For relatively small
b; c the interaction is monotonic, and the spirals exhibit
asymptotic repulsion irrespectively of their charge
(‘‘monotonic range’’) [12,13]. In contrast, for larger b; c
satisfying the condition �c� b�=�1� bc� > c� � 0:845
the velocity vs distance dependence is modulated (‘‘os-
cillatory range’’), and the spirals become keen to form a
variety of long-living (but unstable) bound states [12,15].

While the above interactions cannot account for the
strongly chaotic regimes where many defects are sponta-
neously generated and undergo violent motion, they are
expected to play a leading role in the occurrence of the
quasistatic structures of large and small spirals sur-
rounded by a complex network of shocks commonly
observed in the large region of the �b; c� parameter space
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they seem to be frozen on usual observation time scales.
Our results lead to a dramatically different picture.

We conducted detailed numerical studies of the two-
dimensional CGLE restricted to the case b�0 and c>0
(for the regimes of interest scaling relations apply in
parameter space [8]). The integration domain with peri-
odic boundary conditions was typically of area S�512�
512 and the integration time about 107. Various integra-
tion schemes were used and all results checked against
variation of the numerical resolution. We monitored the
positions rj�t� of all N spirals, the instantaneous ‘‘activ-
ity’’ T�S�1

R
Sdrj@tjAjj, and—when applicable — the

spiral diffusion coefficient D� 1
Nt

PN
j�1hjrj�t��rj�0�j2i.

Since, for well-separated spirals, jAj varies only near
the cores, T is related to the velocity of spirals.

In the monotonic range c < c� (Fig. 1), after a short
transient during which the initial number of defects may
decrease, the number of spirals remains constant and T
fluctuates around a well-defined value. In large enough
systems, the spiral cores perform normal diffusive motion
[Fig. 1(c)]. This vortex liquid can be characterized by a
viscosity ��D�1. Since all scales, already very large
near c�, diverge exponentially when c! 0, an extensive
numerical investigation of the dependence of D on c and
on the vortex density � � N=S is currently beyond reach.
FIG. 1 (color online). (a) Snapshot of jAj for a typical solu-
tion of the CGLE at c � 0:6 with N � 82 spirals (L � 512).
(b) Core positions and shock lines for a typical solution of
Eqs. (6) for the same parameters as in (a). (c) Mean square dis-
placement hr2i of vortices vs time obtained from CGLE solu-
tions at c � 0:7, L � 256, and N � 28; 22; 18 vortices from
top to bottom. (d) Histograms of distance to nearest neigh-
bor P�R� for c � 0:6, N � 82 (L � 512) for the CGLE (solid
line) and for solutions of Eqs. (6) (dashed line). (e) Histogram
of instantaneous core velocity P�jvj� for c � 0:7, N � 118
(L � 512) for the CGLE (solid line) and for Eqs. (6) (dashed
line); the thin line is an exponential fit P� jvj exp��const�
jvj�. Inset: same data in lin-log scales. (f) D vs 2cjkj=

����
�

p

[from solutions of Eqs. (6)], the lines are theoretical fits
D� exp��cjkj=

����
�

p
�.
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Nevertheless, our data indicate that D increases with �.
The distribution of distances from one spiral core to its
nearest-neighbor is peaked at its mean value as expected
in a liquid [Fig. 1(d)], but the velocity distribution seems
non-Maxwellian [Fig. 1(e) and discussion below].

In contrast, in the oscillatory range c > c�, after a very
long transient [Fig. 2(e)], the population of spirals spon-
taneously segregates into two distinct phases: large and
almost immobile spirals and droplets (clusters) of small
vortices confined between them [Figs. 2(a) and 2(b); see
also [2–4] ]. One can thus define a ‘‘liquid fraction’’ of
small spirals, whose sizes are typical of the vortex liquid
observed in the monotonic range. The first peak in the
P�R� histogram corresponds to this liquid fraction
[Fig. 2(c)]. In contrast to the vortex liquid, though, P�R�
is not well localized and has extra peaks for large R
corresponding to the large immobile vortices. When the
liquid fraction is small, the resulting state exhibits slow
intermittent dynamics (bursts of activity separated by
long quiescent intervals reminiscent of glassy dynamics
[Fig. 2(d)], whereas for higher fractions the activity T
fluctuates around some mean value and the ‘‘liquid’’
vortices can be shown to perform normal diffusion in
the space surrounding the big spirals. This picture is
typical of phase coexistence in first-order transitions of
isolated equilibrium systems [16]. In this respect, our
FIG. 2 (color online). Results in the oscillatory range (c �
1:2). (a) Snapshot of jAj for a typical solution of the CGLE with
N � 124 (L � 256). (b) Core positions and shock lines for a
typical solution of Eqs. (4) [same parameters as in (a)].
(c) Histograms of nearest-neighbor distance P�R� for the
CGLE (L � 512, N ’ 400, measured around t � 106 following
random initial conditions, solid line) and for solutions of
Eqs. (4) (L � 600; N � 700, dashed line). Inset: same in lin-
log scales, with a exponential law (thin line). (d),(e) Time
series of the activity T and of the number of vortices N for
the evolution of the CGLE in a domain of size L � 256 starting
from random initial conditions. (f) Same as (d), but from
simulations of Eqs. (4) with N � 100 vortices (in this case
T � N�1

P
j jvjj).
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results indicate that one can indeed distinguish a ‘‘vortex
glass’’ phase. Unfortunately, because of the ever slower
time scales over which the system evolves, a precise
characterization of this phase using simulations of the
CGLE is currently impossible.

To obtain further insight into the problem, we reduced
the CGLE to a set of ordinary differential equations
describing the motion of the cores rj�t� and the phases
�j�t� of individual spirals. Only pair interactions are
taken into account, making use of the results of [12,15].
The original partial differential equation is thus replaced
by a set of 3N first-order ordinary differential equations
governing the core positions rj�t� and the spiral phases
�j�t�. The phases determine the configuration of the
shock lines, which, in turn, yield the velocity of the cores.
One clear advantage of this approach, in addition to
virtually suppressing physical space, is that it allows
one to bypass the ultraslow time scale related to the
vanishing value of the wave number k as c! 0.

The problem of the interaction between two oppositely
charged spirals is equivalent to that of one spiral and a
straight shock line, i.e., a half-plane with the no-flux
boundary condition @A=@n � 0. For c
 1, the equations
governing the position and phase of the spiral are

dz
dt

� 2c2�k�im� cB0�
exp��2jckjX����������������

�jckjX
p ;

_�� � 2ck2�
exp��2jckjX����������������

�jckjX
p ;

(3)

where z � x� iy is the (complex) spiral position,
dz=dt � vx � ivy, � is the relative phase, m is the topo-
logical charge, B0 ’ 0:48, and X is the distance from the
core [located at ��X; 0�] to the boundary (the y axis is
chosen to be on the shock line) [13]. Equations (3) imply
the asymptotic repulsion of the spiral from the boundary,
in agreement with simulations [12]. This prevents spiral
annihilation in the vortex liquid.

The equations in the oscillatory range c > c� read

Cxvx �mCyvy �
�k

��������������
1� k2

p
exp��pX�

)
�������������
2�pX

p X�*;

Cxvx �mCyvy �
�k

��������������
1� k2

p
exp��pX�

)
�������������
2�pX

p X�*;

(4)

where the complex constants Cx;y; C0; C10 are obtained
numerically and the real parameters p;*; ) are derived
from the linearized CGLE [12,15]. Equations (4) describe
stable bound states of spirals moving along the plane
boundary. However, the problem is complicated by the
fact that the position of the shock line depends on the
relative phase of the spirals. From the condition that
the total spiral phases �j� �r���j��jkjr��j are
equal, one finds that the distance to the shock is given by

X�jrl�rjj=2���l��j�=2jkj: (5)
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Substituting (5) into Eqs. (4) one finds that the symmetric
bound states are unstable in the oscillatory range [15].
Similar phenomena occur for like-charged spirals.

Equations (3) and (4) and condition (5) were used to
investigate the dynamics of many-spiral states. In this
case, one considers each spiral in the local coordinate
system associated with every other spiral and sums up
their contributions (details will be published elsewhere).
Substituting r! 2cjkjr; t! 4

�������
2�

p
c3k2, one obtains from

Eqs. (3)

dzj
dt

�
X

l

��cB0 � iml�
zl � zj
jzl � zjj

exp��Xl������
Xl

p ;

_�j�j �
X

l

exp��Xl�

2c2
�����
Xl

p ;
(6)

where Xl � jzl � zjj=2� c��j ��l�. A similar rescal-
ing was performed in the oscillatory case.

We investigated numerically and analytically the re-
duced equations which, in fact, are rather different in the
oscillatory range [12,15] and in the monotonic range [13].
Overall quantitative agreement with the full CGLE dy-
namics has been found.

In the monotonic range in the large enough domain we
found liquid behavior accompanied by normal diffusion
for all c values. Each spiral core moves chaotically. The
nearest-neighbor distance and velocity distributions are
in quantitative agreement with those obtained from the
full CGLE [Figs. 1(d) and 1(e)], although some deviation
is recorded in the tails due to insufficient statistics. The
velocity distribution is now clearly exponential [P�
jvj exp��const� jvj�]: we interpret this strong deviation
from the Maxwellian law as a manifestation of the non-
equilibrium nature of the vortex liquid. The reason under-
lying the chaotic behavior is that Eqs. (6) do not obey a
variational principle for any c value, due to the nontrivial
form of the pairwise interaction. However, an ensemble
of like-charged spirals tend to form a stable hexagonal
‘‘Wigner’’ crystal due to mutual repulsion. With peri-
odic boundary conditions (used here), one has an equal
mixture of positive and negative spirals, and it can be
proved that a square lattice of spirals with alternating
charges is unstable in a large system with respect to long-
wavelength perturbations. This explains the short-range
crystalline order observed [Fig. 1(a)]. The faithfulness of
the reduced equations to the CGLE is also testified by the
agreement found for the value of the diffusion constant
D. For c � 0:6, domain size L � 512, and N � 46 spirals
D obtained from CGLE is DCGL � 0:0033. For N � 52,
DCGL � 0:004 89 (error bars are about 10%–15%).
Equations (6) yields DODE � 0:0036� 0:0002 for N �
46 and DODE � 0:0053� 0:0005 for N � 52 [17]. The
reduced equations do allow for an extensive study of the
asymptotic properties of the vortex liquid. Taking into
account that the typical interspiral distance varies like
R � 1=

����
�

p
, one can derive from Eq. (3) that D /

exp��,cjkj=
����
�

p
� with , between 1 and 2 (,! 2 for
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)-correlated velocities and ,! 1 in the opposite case).
Fits to numerical results yield , � 1 [Fig. 1(f)].

In the oscillatory range also, the reduced equations
faithfully reproduce the phenomenology of symmetry
breaking, intermittent activity at low vortex densities,
and vortex glass formation observed in the CGLE
[Figs. 2(d) and 2(f)]. The distance distribution function
obtained from Eqs. (4) also is in qualitative agreement
with the full CGLE results, Fig. 2(c) (discrepancy is
likely due to insufficient statistics for the full CGLE
data). Moreover, the peak population seems to be expo-
nentially distributed, indicating the nonzero probability
of the existence of a large spiral which will determine the
ultraslow time scale of the system. The reduced equations
provide an interesting framework to discuss the mecha-
nisms leading to intermittent dynamics in the vortex
glass containing liquid droplets. For a spiral embedded
in a large domain of arbitrary shape, Eqs. (4) generally do
not have a stationary solution vj� _��j�0 for all j (be-
cause the complex constants Cx;y and C10;0 are typically
not proportional). As a result, it is impossible to satisfy
the conditions vj�0 and _��j�0 simultaneously. The
drift of the spirals changes the phases and, therefore,
the shape of their domains.When the phase difference be-
comes large enough, the shock lines rearrange and trigger
rapid dynamics within the liquid droplets. Since the ve-
locity of the cores is an exponential function of interspiral
separation, the typical time scale between such rapid
rearrangements is exponentially large in the spiral size.

We have found that the transition from vortex liquid to
vortex glass possesses some features of a first-order phase
transition. More work is needed to elucidate the corre-
sponding phase diagram. Returning to the question of the
possibility of ‘‘true’’ glassy dynamics [18] (as testified,
e.g., by some aging phenomena), several comments are
now in order. Preliminary numerical results of the re-
duced equations in very large systems at low vortex
density indicate that the intermittent space-time activity
usually reaches a self-averaging asymptotic regime, in
contrast with spin-glass–type behavior [19] and in closer
agreement with a structural glass, which can be viewed
sometimes as a very viscous fluid. On the other hand,
these regimes, as far as they can be studied for the full
CGLE, do exhibit a slow, possibly aginglike, decay of the
number of vortices in the system [Fig. 2(e)]. This leaves
the door open for an actual vortex glass in this fully
deterministic, noiseless, disorder-free context — a chal-
lenge to models of glassy behavior in statistical physics.

Our work has shown that the multispiral ‘‘frozen’’
states of the CGLE actually evolve on very long time
scales. These ultraslow regimes are relevant, we believe,
to the many related models and experimental situations.
A vortex liquid and a vortex glass can be distinguished
depending on the effective interaction law between spi-
rals. These ‘‘phases’’ are dynamical, and are remarkably
068301-4
well accounted for, in the case of the CGLE, by a re-
duction of the full problem to a finite set of ordinary
differential equations governing the vortex cores. This
constitutes maybe the first success for the ideas under-
lying the concept of ‘‘defect-mediated turbulence’’ put
forward in the 1980s [8,20,21].
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