The present investigation examines the relationship between structural order,
diffusivity anomalies, and density anomalies in liquid silica by means of
molecular dynamics simulations. We use previously defined orientational and
translational order parameters to quantify local structural order in atomic
configurations. Extensive simulations are performed at different state points
to measure structural order, diffusivity, and thermodynamic properties. It is
found that silica shares many trends recently reported for water [J. R.
Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate
densities, the distribution of local orientational order is bimodal. At fixed
temperature, order parameter extrema occur upon compression: a maximum in
orientational order followed by a minimum in translational order. Unlike water,
however, silica's translational order parameter minimum is broad, and there is
no range of thermodynamic conditions where both parameters are strictly
coupled. Furthermore, the temperature-density regime where both structural
order parameters decrease upon isothermal compression (the structurally
anomalous regime) does not encompass the region of diffusivity anomalies, as
was the case for water.Comment: 30 pages, 8 figure