3,148 research outputs found
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains
We propose that the salient feature to be explained about the glass
transition of supercooled liquids is the temperature-controlled superArrhenius
activated nature of the viscous slowing down, more strikingly seen in
weakly-bonded, fragile systems. In the light of this observation, the relevance
of simple models of spherically interacting particles and that of models based
on free-volume congested dynamics are questioned. Finally, we discuss how the
main aspects of the phenomenology of supercooled liquids, including the
crossover from Arrhenius to superArrhenius activated behavior and the
heterogeneous character of the relaxation, can be described by an
approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter,
proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
Factors Community College Faculty Consider Important to Academic Leadership
Although many of the pressures leaders face come from external sources, the expertise of the faculty should not be ignored when preparing community college leaders. The current study analyzed survey data from community college faculty across the state of Kentucky to determine which attributes they considered important to academic leadership. The faculty members who responded to an online survey regarded most highly factors pertaining to communication, character, decision-making, teamwork, work ethic, and personal relationships
Subdiffusion and cage effect in a sheared granular material
We investigate experimentally the diffusion properties of a bidimensional
bidisperse dry granular material under quasistatic cyclic shear.The comparison
of these properties with results obtained both in computer simulations of hard
spheres systems and Lenard-Jones liquids and experiments on colloidal systems
near the glass transition demonstrates a strong analogy between the behaviour
of granular matter and these systems. More specifically, we study in detail the
cage dynamics responsible for the subdiffusion in the slow relaxation regime,
and obtain the values of relevant time and length scales.Comment: 4 pages, 6 figures, submitted to PR
Subdiffusion and the cage effect studied near the colloidal glass transition
The dynamics of a glass-forming material slow greatly near the glass
transition, and molecular motion becomes inhibited. We use confocal microscopy
to investigate the motion of colloidal particles near the colloidal glass
transition. As the concentration in a dense colloidal suspension is increased,
particles become confined in transient cages formed by their neighbors. This
prevents them from diffusing freely throughout the sample. We quantify the
properties of these cages by measuring temporal anticorrelations of the
particles' displacements. The local cage properties are related to the
subdiffusive rise of the mean square displacement: over a broad range of time
scales, the mean square displacement grows slower than linearly in time.Comment: submitted to Chemical Physics, special issue on "Strange Kinetics
Two-Gaussian excitations model for the glass transition
We develop a modified "two-state" model with Gaussian widths for the site
energies of both ground and excited states, consistent with expectations for a
disordered system. The thermodynamic properties of the system are analyzed in
configuration space and found to bridge the gap between simple two state models
("logarithmic" model in configuration space) and the random energy model
("Gaussian" model in configuration space). The Kauzmann singularity given by
the random energy model remains for very fragile liquids but is suppressed or
eliminated for stronger liquids. The sharp form of constant volume heat
capacity found by recent simulations for binary mixed Lennard Jones and soft
sphere systems is reproduced by the model, as is the excess entropy and heat
capacity of a variety of laboratory systems, strong and fragile. The ideal
glass in all cases has a narrow Gaussian, almost invariant among molecular and
atomic glassformers, while the excited state Gaussian depends on the system and
its width plays a role in the thermodynamic fragility. The model predicts the
existence of first-order phase transition for fragile liquids.Comment: 12 pages, 12 figure
Molecular structural order and anomalies in liquid silica
The present investigation examines the relationship between structural order,
diffusivity anomalies, and density anomalies in liquid silica by means of
molecular dynamics simulations. We use previously defined orientational and
translational order parameters to quantify local structural order in atomic
configurations. Extensive simulations are performed at different state points
to measure structural order, diffusivity, and thermodynamic properties. It is
found that silica shares many trends recently reported for water [J. R.
Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate
densities, the distribution of local orientational order is bimodal. At fixed
temperature, order parameter extrema occur upon compression: a maximum in
orientational order followed by a minimum in translational order. Unlike water,
however, silica's translational order parameter minimum is broad, and there is
no range of thermodynamic conditions where both parameters are strictly
coupled. Furthermore, the temperature-density regime where both structural
order parameters decrease upon isothermal compression (the structurally
anomalous regime) does not encompass the region of diffusivity anomalies, as
was the case for water.Comment: 30 pages, 8 figure
Unpicking Motives to Purchase Locally-Produced Food: Analysis of Direct and Moderation Effects
Purpose This study investigates how attributes associated with local food (intrinsic product quality; local support) motivate purchase behaviour. Previous research assumes heterogeneity in consumer motivation, but this has never been formally assessed. As such, the influence of local food attributes in motivating product use is integrated into a model in which consumer values and personal characteristics/situational variables are specified as moderators. Design/methodology/approach Eight hypotheses are tested using data collected from a quota sample of respondents recruited via an online panel of 1223 shoppers. A three-stage analysis is employed using structural equation modelling (SEM). Moderation effects are tested using both latent interactions and multiple-group analysis. Findings Shoppers purchase local food more frequently as a consequence of local support rather than intrinsic product quality. Unpicking these relationships reveal that local support has an amplified effect when local identity is higher, and when the shopper is female or of an older age (55yrs+). Surprisingly, the influence of intrinsic product quality is equivalent by gender, age and location (rural/urban). Practical implications Marketers promoting locally produced foods should focus on both the intrinsic attributes of local food as well as the role it plays within the local community. The latter is more likely to be successful with communications aimed at women and older consumers. Originality/value With previous studies focusing on how local food attributes influence favourable consumer behaviours, the current study unpicks these relationships by examining heterogeneity in responses. This is the first study to concurrently use attributes, values and personal characteristics/situational variables in explaining shopping behaviour for local food
Relation between positional specific heat and static relaxation length: Application to supercooled liquids
A general identification of the {\em positional specific heat} as the
thermodynamic response function associated with the {\em static relaxation
length} is proposed, and a phenomenological description for the thermal
dependence of the static relaxation length in supercooled liquids is presented.
Accordingly, through a phenomenological determination of positional specific
heat of supercooled liquids, we arrive at the thermal variation of the static
relaxation length , which is found to vary in accordance with in the quasi-equilibrium supercooled temperature regime, where
is the Vogel-Fulcher temperature and exponent equals unity. This
result to a certain degree agrees with that obtained from mean field theory of
random-first-order transition, which suggests a power law temperature variation
for with an apparent divergence at . However, the phenomenological
exponent , is higher than the corresponding mean field estimate
(becoming exact in infinite dimensions), and in perfect agreement with the
relaxation length exponent as obtained from the numerical simulations of the
same models of structural glass in three spatial dimensions.Comment: Revised version, 7 pages, no figures, submitted to IOP Publishin
- …