300 research outputs found

    Microchannel avalanche photodiode with wide linearity range

    Full text link
    Design and physical operation principles of new microchannel avalanche photodiode (MC APD) with gain up to 10^5 and linearity range improved an order of magnitude compared to known similar devices. A distinctive feature of the new device is a directly biased p-n junction under each pixel which plays role of an individual quenching resistor. This allows increasing pixel density up to 40000 per mm^2 and making entire device area sensitive.Comment: Submitted to Journal of Technical Physic

    Extended search for supernovalike neutrinos in NOvA coincident with LIGO/Virgo detections

    Get PDF
    A search is performed for supernovalike neutrino interactions coincident with 76 gravitational wave events detected by the LIGO/Virgo Collaboration. For 40 of these events, full readout of the time around the gravitational wave is available from the NOvA Far Detector. For these events, we set limits on the fluence of the sum of all neutrino flavors of F29(50) kpc at 90% C.L. Weaker limits are set for other gravitational wave events with partial Far Detector data and/or Near Detector data

    Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    Get PDF
    We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810 km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.05 x 10(20) protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 +/- 9.7(stat) +/- 9.4(syst) events predicted assuming mixing only occurs between active neutrino species. No evidence for upsilon(mu) -\u3e upsilon(mu) transitions is found. Interpreting these results within a 3 + 1 model, we place constraints on the mixing angles theta(24) \u3c 20.8 degrees and theta(34) \u3c 31.2 degrees at the 90% C.L. for 0.05 eV(2) \u3c= Delta m(41)(2) \u3c= 0.5 eV(2), the range of mass splittings that produce no significant oscillations over the Near Detector baseline

    Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

    Get PDF
    A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality Q2>1Q^{2}>1 (GeV/cc)2^2, invariant mass of the hadronic system W>5W > 5 GeV/c2c^2, Bjorken scaling variable in the range 0.003<x<0.40.003 < x < 0.4, fraction of the virtual photon energy carried by the hadron in the range 0.2<z<0.80.2 < z < 0.8, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/c)2<PhT2<3c)^2 < P_{\rm{hT}}^{2} < 3 (GeV/cc)2^2. The multiplicities are presented as a function of PhT2P_{\rm{hT}}^{2} in three-dimensional bins of xx, Q2Q^2, zz and compared to previous semi-inclusive measurements. We explore the small-PhT2P_{\rm{hT}}^{2} region, i.e. PhT2<1P_{\rm{hT}}^{2} < 1 (GeV/cc)2^2, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the domain of larger PhT2P_{\rm{hT}}^{2}, where contributions from higher-order perturbative QCD are expected to dominate. The multiplicities are fitted using a single-exponential function at small PhT2P_{\rm{hT}}^{2} to study the dependence of the average transverse momentum PhT2\langle P_{\rm{hT}}^{2}\rangle on xx, Q2Q^2 and zz. The power-law behaviour of the multiplicities at large PhT2P_{\rm{hT}}^{2} is investigated using various functional forms. The fits describe the data reasonably well over the full measured range.Comment: 28 pages, 20 figure

    Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Get PDF
    Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable xx, the relative virtual-photon energy yy and the relative hadron energy zz. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target (6^6LiD). They cover the kinematic domain in the photon virtuality Q2Q^2 > 1(GeV/c)2)^2, 0.004<x<0.40.004 < x < 0.4, 0.2<z<0.850.2 < z < 0.85 and 0.1<y<0.70.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions

    Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Get PDF
    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q2>1 (GeV/c)2Q^2>1~({\rm GeV}/c)^2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/cc polarised muon beam impinging on a polarised 6^6LiD target. By analysing the full range in hadron transverse momentum pTp_{\rm T}, the different pTp_{\rm T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g\Delta g/g is evaluated at leading order in pQCD at a hard scale of μ2=Q2=3(GeV/c)2\mu^2= \langle Q^2 \rangle = 3 ({\rm GeV}/c)^2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, xgx_{\rm g}, covering the range 0.04 ⁣< ⁣xg ⁣< ⁣0.280.04 \!<\! x_{ \rm g}\! <\! 0.28~ and does not exhibit a significant dependence on xgx_{\rm g}. The average over the three intervals, Δg/g=0.113±0.038(stat.)±0.036(syst.)\langle \Delta g/g \rangle = 0.113 \pm 0.038_{\rm (stat.)}\pm 0.036_{\rm (syst.)} at xg0.10\langle x_{\rm g} \rangle \approx 0.10, suggests that the gluon polarisation is positive in the measured xgx_{\rm g} range.Comment: 14 pages, 6 figure

    Measurement of the Neutrino Mixing Angle theta(23) in NOvA

    Get PDF
    This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05 x 10(20) protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal theta(23) mixing (theta(23) = pi/4). Assuming the normal mass hierarchy, we find Delta m(32)(2) = (2.67 +/- 0.11) x 10(-3) eV(2) and sin(2) theta(23)at the two statistically degenerate values 0.404(-0.022)(+0.030) and 0.624(-0.030)(+0.022), both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6 sigma significance
    corecore