225 research outputs found

    Heterogeneity and timing in the quorum sensing system of Vibrio harveyi

    Get PDF
    Bacteria produce and excrete signaling molecules, so called autoinducers, which allow them to monitor their population density and/or their environment in a process best known as quorum sensing. The Gram-negative marine bacterium Vibrio harveyi regulates certain virulence factors like type III secretion, siderophore production, and exoproteolytic activity as well as biofilm formation and bioluminescence using quorum sensing. The bacterium produces three different autoinducers: HAI-1, a N-(3-hydroxybutyryl)-D-homoserine lactone, AI-2, a furanosylborate diester, and CAI-1, a (Z)-3-aminoundec-2-en-4-one. The autoinducers are recognized by the hybrid sensor kinases LuxN, LuxQ and CqsS. All information is transferred to the phosphotransfer protein LuxU and the response regulator LuxO via phosphorelay and further transduced into the copy number of the master regulator LuxR. LuxR induces/represses a multitude of genes/operons (>100) including the lux-operon responsible for the production of bioluminescence. In order to understand how single cells behave within an autoinducer-activated community, autoinducer-induced processes were investigated in a homogeneous environment over time. Analysis of wild type single cells with respect to bioluminescence revealed that even at high cell densities only 70% of the cells of a population were bright. Moreover, fractionation of the population was found for autoinducer-controlled promoters (of genes coding for bioluminescence, exoproteolytic activity, and type III secretion) using reporter strains containing promoter::gfp fusions. These results indicated phenotypic heterogeneity of a genetic homogeneous population and were independent of the used cultivation medium, temperature or strain. An artificial increase of the autoinducer concentrations resulted in an all-bright cell population similar as observed for a luxO deletion mutant. Both, wild type and deletion mutant switched to biofilm formation at high cell density. However, the capability of the mutant to produce biofilm was significantly reduced. These data suggest that a population of the non-differentiating bacterium Vibrio harveyi takes advantages of division of labor. In addition, a temporal variation of the autoinducer concentrations over time was found. The extracellular concentrations of the three autoinducers and quorum sensing-regulated functions of Vibrio harveyi were monitored in a growing culture. In the early and mid-exponential growth phase only AI-2 was detectable and bioluminescence was induced. In the late exponential growth phase both, HAI-1 and AI-2 reached their maximum values, bioluminescence stayed high and exoproteolytic activity was induced. The stationary phase was characterized by equal concentrations of HAI-1 and AI-2, exoproteolytic activity reached its maximum, and CAI-1 activity was detectable in the culture fluids. Furthermore, only a stable and mature biofilm was formed, when HAI-1 and AI-2 were present in the above described ratios over time. CAI-1 had no influence on the biofilm formation in Vibrio harveyi. These results demonstrate that not the cell density per se is important, but that autoinducers rather control the development of a Vibrio harveyi population

    Determination of regional bone blood flow by means of fluorescent microspheres using an automated sample-processing procedure

    Get PDF
    The determination of regional blood flow utilizing fluorescent microspheres (FMs) is an established method for numerous organs. Recent progress, in particular the automation of sample processing, has further improved this method. However, the FM method (reference sample technique), which allows repetitive measurement of regional organ blood flow, has so far not been used for the determination of blood flow in bone. The aim of the present study was to establish FM for the quantification of regional bone blood flow (RBBF). Female, anesthetized New Zealand rabbits (n = 6) received left ventricular injections of different amounts of FM at six subsequent time points. In order to examine the precision of RBBF determination, two different FM species were injected simultaneously at the sixth injection. At the end of the experiments the femoral and tibial condyles of each hind limb were removed and the fluorescence intensity in the tissue samples was measured by an automated procedure. In an in vitro study we have shown that acid digestion of the crystalline matrix has no effect on the fluorescence characteristics of FM. The determination of the number of spheres per tissue sample revealed that depending on the tissue sample size up to 3 x 10(6) spheres/injection were necessary to obtain about 400 microspheres in the individual bone samples. RBBF values of the tibial and femoral condyles did not differ at various injection intervals. The tibial blood flow values varied between 6.6 +/- 1.1 and 8.5 +/- 1.4 ml/min/100 g and were significantly higher than those of the femur (4.3 +/- 1.1 to 6.0 +/- 1.8 ml/min/100 g). The bone blood flow values obtained by simultaneous injection of two FM species correlated significantly (r = 0.96, slope = 1.06, intercept = 0.05), the mean difference was 0.39 +/- 1.11 ml/min/100 g. Our data demonstrate that the measurement of RBBF by means of FM allows a valid determination of RBBF. Copyright (C) 2003 S. Karger AG, Basel

    Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals

    Get PDF
    Background: Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results: Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter:: gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter:: gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions: Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    Exenatide Improves Bone Quality in a Murine Model of Genetically Inherited Type 2 Diabetes Mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is associated with skeletal complications, including an increased risk of fractures. Reduced blood supply and bone strength may contribute to this skeletal fragility. We hypothesized that long-term administration of Exenatide, a glucagon- like peptide-1 receptor agonist, would improve bone architecture and strength of T2DM mice by increasing blood flow to bone, thereby stimulating bone formation. In this study, we used a model of obesity and severe T2DM, the leptin receptor-deficient db/db mouse to assess alterations in bone quality and hindlimb blood flow and to examine the beneficial effects of 4 weeks administration of Exenatide. As expected, diabetic mice showed marked alterations in bone structure, remodeling and strength, and basal vascular tone compared with lean mice. Exenatide treatment improved trabecular bone mass and architecture by increasing bone formation rate, but only in diabetic mice. Although there was no effect on hindlimb perfusion at the end of this treatment, exenatide administration acutely increased tibial blood flow. While Exenatide treatment did not restore the impaired bone strength, intrinsic properties of the matrix, such as collagen maturity, were improved. The effects of Exenatide on in vitro bone formation were further investigated in primary osteoblasts cultured under high-glucose conditions, showing that Exenatide reversed the impairment in bone formation induced by glucose. In conclusion, Exenatide improves trabecular bone mass by increasing bone formation and could protect against the development of skeletal complications associated with T2DM

    Combinatorial quorum sensing allows bacteria to resolve their social and physical environment

    Get PDF
    Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay betweeallyn its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication

    Spatial Heterogeneity of Autoinducer Regulation Systems

    Get PDF
    Autoinducer signals enable coordinated behaviour of bacterial populations, a phenomenon originally described as quorum sensing. Autoinducer systems are often controlled by environmental substances as nutrients or secondary metabolites (signals) from neighbouring organisms. In cell aggregates and biofilms gradients of signals and environmental substances emerge. Mathematical modelling is used to analyse the functioning of the system. We find that the autoinducer regulation network generates spatially heterogeneous behaviour, up to a kind of multicellularity-like division of work, especially under nutrient-controlled conditions. A hybrid push/pull concept is proposed to explain the ecological function. The analysis allows to explain hitherto seemingly contradicting experimental findings

    Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri

    Get PDF
    The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V.fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V.fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell
    corecore