79 research outputs found

    Functional traits of acquisitive invasive woody species differ from conservative invasive and native species

    Get PDF
    One of the most important sources of invasiveness is species’ functional traits and their variability. However there are still few studies on invasive tree species traits conducted along resource gradients that allow for a comparison of acquisitive and conservative strategies. We aimed to assess the differences in trait variation among native alien conservative and alien acquisitive tree species along resource availability gradients (soil fertility and light availability) and to assess the traits variability of the species studied along resources availability gradients. Our study compared invasive tree species in Europe (Prunus serotina Ehrh. Quercus rubra L. and Robinia pseudoacacia L.) with their native competitors (Acer pseudoplatanus L. A. platanoides L. Quercus petraea (Matt.) Liebl. and Fagus sylvatica L.). The study was conducted on 1329 seedlings and saplings collected in a system of 372 study plots in W Poland. For each individual we assessed leaf stem and root mass ratios total biomass leaf area ratio specific leaf area and projected leaf area. Two invasive species (P. serotina and R. pseudoacacia) represented a more acquisitive strategy than native species – along litter pH and light availability gradients these species had higher leaf mass fraction specific leaf area and leaf area ratio. In contrast Q. rubra had the highest total biomass and root mass fraction. Alien species usually had higher coefficients of variation of studied traits. This suggests that relatively high projected leaf area as a way of filling space and outcompeting native species may be reached in two ways – biomass allocation to leaves and control of leaf morphology or by overall growth rate. High variability of invasive species traits also suggests randomness in seedling survival which similarly to the neutral theory of invasion highlights the necessity of including randomness in modelling biological invasions

    Light and propagule pressure affect invasion intensity of Prunus serotina in a 14-tree species forest common garden experiment

    Get PDF
    Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunus serotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P. serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P. serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P. serotina ranged from 0 to 22,000-fold. The success of P. serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P. serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P. serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P. serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory

    Native plant community characteristics explain alien species success in post-industrial vegetation

    Get PDF
    Biological invasions are one of the major challenges to the restoration of post-mining sites. Most post-mining sites are under technical reclamation with only a few left to spontaneous vegetation processes. Therefore, we know little about alien plant species on spontaneously-vegetated post-coal mine heaps and how native community characteristics predict their establishment. To fill the knowledge gap, we aimed to determine the drivers of alien species colonisation on post-coal mine heaps. Specifically, we asked: (i) Which alien species are the most successful on post-coal mine heaps and why? (ii) What are the drivers of alien species richness and cover, and how are they affected by the native community? (iii) What does it mean for predicting threats from alien species and management? We recorded vascular plant species and their abundance across 400 plots on post-coal mine heaps in Upper Silesia, Poland. We calculated plant community taxonomic and functional characteristics and, using mixed-effects models, we estimated predictors of alien species richness and cover. We found 65 alien species on post-coal mine heaps, comprising 20.4% of all recorded species, including 36 neophytes and 29 archaeophytes. Amongst them – Erigeron canadensis, Solidago gigantea, Solidago canadensis, Erigeron annuus and Impatiens parviflora – were the most frequent on the studied heaps. We showed that native functional richness significantly predicts alien species richness and cover. Similarly, native community-weighted mean (CWM) seed mass and plant height predict alien species cover. However, CWM of specific leaf area for native species marginally predicts alien species richness. We showed that alien species cover decreases with native species cover. Our findings revealed the ecological significance of niche-filling and the biotic acceptance hypotheses on post-coal mine heaps. We demonstrated how exploring native community characteristics can help in understanding the invasibility and management of post-industrial vegetation

    Involvement of toll-like receptor 9 polymorphism in cervical cancer development

    Get PDF
    The role played by the polymorphism located in Toll-like Receptor 9 (TLR9) as a risk factor of cervical cancer remains elusive. Therefore, we studied the association of the TLR9 −1486 T/C (rs187084) and C2848T (rs352140) polymorphisms with cervical cancer. The TLR9 −1486 T/C and C2848T polymorphism was genotyped in 426 patients and 460 unrelated healthy females from the Polish population. Logistic regression analysis adjusting for age, pregnancy, oral contraceptive use, tobacco smoking, and menopausal status showed that both the TLR9 −1486 T/C and C2848T polymorphisms could be a genetic risk factor for cervical cancer. For the TLR9 −1486 T/C polymorphism, the adjusted OR for patients with the C/T genotype versus T/T genotype was 1.371 (95 % CI 1.021–1.842, p = 0.0361), the adjusted OR for the C/C genotype vs the T/T genotype was 1.300 (95 % CI 1.016–1.507, p = 0.0096), and the adjusted OR for the C/T or C/C genotype vs the T/T genotype was 1.448 (95 % CI 1.099–1.908, p = 0.0083). For the C2848T polymorphism, the adjusted OR for patients with the C/T genotype vs C/C genotype was 1.443 (95 % CI 1.019–2.043, p = 0.0380), the adjusted OR for the T/T genotype vs the C/C genotype was 1.237 (95 % CI 1.016–1.507, p = 0.0328), and the adjusted OR for the T/C or T/T genotype vs the C/C genotype was 1.345 (95 % CI 0.976–1.855, p = 0.0700). Our studies suggest that the TLR9 −1486 T/C and C2848T polymorphisms may be a genetic risk factor for cervical cancer

    Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests

    Get PDF
    & Key message Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density. & Context Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in lowelevation mountain forests. & Aims We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abiesregeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies. & Methods The study was conducted in the Stołowe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2 ) for natural regeneration, light availability, soil pH, and understory vegetation assessment

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system 1. Remote-sensing estimates to quantify carbon losses from global forests 2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced 6 and satellite-derived approaches 2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea 2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore