180 research outputs found

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457

    An analysis of yield variation under soil conservation practices

    Get PDF
    Much attention has been paid to the effects of multiple soil conservation and soil health practices on the mean yield of the subsequent crop. Much less research has focused on the variability of crop yields over time or space. Yield stability reported in standard deviation, mean absolute deviation, or coefficient of variation can be an important measure of risk for producers. Risk reduction has economic value, and understanding the effect of tillage and other soil conservation practices on yield risk is relevant to farm financial management and crop insurance risk assessment. We used data from test plots in a corn (Zea mays L.)–soybean (Glycine max L.) rotation, spanning from 2003 to 2011 to assess differences in yield stability over time and space. In this experiment, each plot was randomly assigned to a treatment of no-till with no cover crop (NTNC), no-till with an annual ryegrass (Lolium multiflorum Lam.) cover crop (NTCC), or a control group using conventional tillage with no cover crop (CTNC). The statistical analysis made three relevant comparisons: (1) NTCC versus NTNC, (2) NTNC versus CTNC, and (3) NTCC versus CTNC. The analysis also included separating temporal and spatial variation using a time-first approach from the literature, followed by testing for differences between groups. We employed a standard deviation ratio test, Levene’s test, and coefficient of variation t-test. Additionally, analysis of temporal volatility was conducted using ordinary least squares regression and associated t-tests in a method similar to a stock beta, a technique commonly accepted in finance to measure the volatility of an investment. We propose this as a new method in analyzing the temporal volatility in crop yields. We found that no-till reduced average temporal yield variation in corn, and that cover crops reduced average spatial variation in corn. These results were robust over multiple statistical tests. Using the beta coefficient methodology proposed in this paper, we found in both corn and soybeans that NTNC and NTCC had lower temporal yield volatility relative to a benchmark yield from the CTNC group. However, the beta coefficients were, in most cases, not statistically significant. The results of this study suggest that both no-till and cover crops may help reduce yield risk for Midwestern farmers while reducing soil and nutrient loss

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g. ‘positive priming effects’ that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding 13C labelled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesised that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils

    Functional differences in the microbial processing of recent assimilates under two contrasting perennial bioenergy plantations

    Get PDF
    Land use change driven alteration of microbial communities can have implications on belowground C cycling and storage, although our understanding of the interactions between plant C inputs and soil microbes is limited. Using phospholipid fatty acids (PLFA's) we profiled the microbial communities under two contrasting UK perennial bioenergy crops, Short Rotation Coppice (SRC) willow and Miscanthus Giganteus (miscanthus), and used 13C – pulse labelling to investigate how recent carbon (C) assimilates were transferred through plant tissues to soil microbes. Total PLFA's and fungal to bacterial (F:B) ratios were higher under SRC willow (Total PLFA = 47.70 ± 1.66 SE μg PLFA g−1 dry weight soil, F:B = 0.27 ± 0.01 SE) relative to miscanthus (Total PLFA = 30.89 ± 0.73 SE μg PLFA g−1 dry weight soil, F:B = 0.17 ± 0.00 SE). Functional differences in microbial communities were highlighted by contrasting processing of labelled C. SRC willow allocated 44% of total 13C detected into fungal PLFA relative to 9% under miscanthus and 380% more 13C was returned to the atmosphere in soil respiration from SRC willow soil compared to miscanthus. Our findings elucidate the roles that bacteria and fungi play in the turnover of recent plant derived C under these two perennial bioenergy crops, and provide important evidence on the impacts of land use change to bioenergy on microbial community composition

    Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization

    Get PDF
    There is an emerging consensus that microbial necromass carbon is the primary constituent of stable soil carbon, yet the controls on the stabilization process are unknown. Prior to stabilization, microbial necromass may be recycled by the microbial community. We propose that the efficiency of this recycling is a critical determinant of soil carbon stabilization rates. Here we explore the controls on necromass recycling efficiency in 27 UK grassland soils using stable isotope tracing and indicator species analysis. We found that recycling efficiency was unaffected by land management. Instead, recycling efficiency increased with microbial growth rate on necromass, and was highest in soils with low historical precipitation. We identified bacterial and fungal indicators of necromass recycling efficiency, which could be used to clarify soil carbon stabilization mechanisms. We conclude that environmental and microbial controls have a strong influence on necromass recycling, and suggest that this, in turn, influences soil carbon stabilization

    Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard

    Get PDF
    Widespread seepage of methane from seafloor sediments offshore Svalbard close to the landward limit of the gas hydrate stability zone (GHSZ) may, in part, be driven by hydrate destabilization due to bottom water warming. To assess whether this methane reaches the atmosphere where it may contribute to further warming, we have undertaken comprehensive surveys of methane in seawater and air on the upper slope and shelf region. Near the GHSZ limit at ?400 m water depth, methane concentrations are highest close to the seabed, reaching 825 nM. A simple box model of dissolved methane removal from bottom waters by horizontal and vertical mixing and microbially mediated oxidation indicates that ?60% of methane released at the seafloor is oxidized at depth before it mixes with overlying surface waters. Deep waters are therefore not a significant source of methane to intermediate and surface waters; rather, relatively high methane concentrations in these waters (up to 50 nM) are attributed to isopycnal turbulent mixing with shelf waters. On the shelf, extensive seafloor seepage at <100 m water depth produces methane concentrations of up to 615 nM. The diffusive flux of methane from sea to air in the vicinity of the landward limit of the GHSZ is ?4–20 ?mol m?2 d?1, which is small relative to other Arctic sources. In support of this, analyses of mole fractions and the carbon isotope signature of atmospheric methane above the seeps do not indicate a significant local contribution from the seafloor source

    The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies

    Get PDF
    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5R200, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters. The online FS catalog can be found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added: http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm

    “There was something very peculiar about Doc…”: Deciphering Queer Intimacy in Representations of Doc Holliday

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in American Nineteenth-Century History on 8-12-14, available online: http://dx.doi.org/10.1080/14664658.2014.971481This essay discusses representations of male intimacy in life-writing about consumptive gunfighter John Henry “Doc” Holliday (1851-1887). I argue that twentieth-century commentators rarely appreciated the historical specificity of Holliday’s friendships in a frontier culture that not only normalized but actively celebrated same-sex intimacy. Indeed, Holliday lived on the frayed edges of known nineteenth-century socio-sexual norms, and his interactions with other men were further complicated by his vicious reputation and his disability. His short life and eventful afterlife exposes the gaps in available evidence – and the flaws in our ability to interpret it. Yet something may still be gleaned from the early newspaper accounts of Holliday. Having argued that there is insufficient evidence to justify positioning him within modern categories of hetero/homosexuality, I analyze the language used in pre-1900 descriptions of first-hand encounters with Holliday to illuminate the consumptive gunfighter’s experience of intimacy, if not its meaning

    2023 Roadmap on ammonia as a carbon-free fuel

    Get PDF
    The 15 short chapters that form this 2023 ammonia-for-energy roadmap provide a comprehensive assessment of the current worldwide ammonia landscape and the future opportunities and associated challenges facing the use of ammonia, not only in the part that it can play in terms of the future displacement of fossil-fuel reserves towards massive, long-term, carbon-free energy storage and heat and power provision, but also in its broader holistic impacts that touch all three components of the future global food-water-energy nexus
    corecore