157 research outputs found

    Magnetic Field Tomography in Nearby Galaxies with the Square Kilometre Array

    Get PDF
    Magnetic fields play an important role in shaping the structure and evolution of the interstellar medium (ISM) of galaxies, but the details of this relationship remain unclear. With SKA1, the 3D structure of galactic magnetic fields and its connection to star formation will be revealed. A highly sensitive probe of the internal structure of the magnetoionized ISM is the partial depolarization of synchrotron radiation from inside the volume. Different configurations of magnetic field and ionized gas within the resolution element of the telescope lead to frequency-dependent changes in the observed degree of polarization. The results of spectro-polarimetric observations are tied to physical structure in the ISM through comparison with detailed modeling, supplemented with the use of new analysis techniques that are being actively developed and studied within the community such as Rotation Measure Synthesis. The SKA will enable this field to come into its own and begin the study of the detailed structure of the magnetized ISM in a sample of nearby galaxies, thanks to its extraordinary wideband capabilities coupled with the combination of excellent surface brightness sensitivity and angular resolution.Comment: 11 pages, 1 figure; to appear as part of 'Cosmic Magnetism' in Proceedings 'Advancing Astrophysics with the SKA (AASKA14)', PoS(AASKA14)10

    VLA-ANGST: A high-resolution HI Survey of Nearby Dwarf Galaxies

    Full text link
    We present the "Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)." VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km/s) and spatial (~6") resolution observations of neutral, atomic hydrogen (HI) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic HST survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D\lesssim4 Mpc). VLA-ANGST provides VLA HI observations of the sub-sample of ANGST galaxies with recent star formation that are observable from the northern hemisphere and that were not observed in the "The HI Nearby Galaxy Survey" (THINGS). The overarching scientific goal of VLA-ANGST is to investigate fundamental characteristics of the neutral interstellar medium (ISM) of dwarf galaxies. Here we describe the VLA observations, the data reduction, and the final VLA-ANGST data products. We present an atlas of the integrated HI maps, the intensity-weighted velocity fields, the second moment maps as a measure for the velocity dispersion of the HI, individual channel maps, and integrated HI spectra for each VLA-ANGST galaxy. We closely follow the observational setup and data reduction of THINGS to achieve comparable sensitivity and angular resolution. A major difference, however, is the high velocity resolution of the VLA-ANGST observations (0.65 and 1.3km/s for the majority of the galaxies). The VLA-ANGST data products are made publicly available at: https://science.nrao.edu/science/surveys/vla-angst. With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the FIR to the UV, VLA-ANGST will enable detailed studies of the relationship between the ISM and star formation in dwarf galaxies on a ~100 pc scale.Comment: 64 figures, grouped into 32. 115 pages, accepted for publication in the Astronomical Journa

    Understanding Dwarf Galaxies in order to Understand Dark Matter

    Full text link
    Much progress has been made in recent years by the galaxy simulation community in making realistic galaxies, mostly by more accurately capturing the effects of baryons on the structural evolution of dark matter halos at high resolutions. This progress has altered theoretical expectations for galaxy evolution within a Cold Dark Matter (CDM) model, reconciling many earlier discrepancies between theory and observations. Despite this reconciliation, CDM may not be an accurate model for our Universe. Much more work must be done to understand the predictions for galaxy formation within alternative dark matter models.Comment: Refereed contribution to the Proceedings of the Simons Symposium on Illuminating Dark Matter, to be published by Springe

    The ACS Nearby Galaxy Survey Treasury IV. The Star Formation History of NGC 2976

    Full text link
    We present resolved stellar photometry of NGC 2976 obtained with the Advanced Camera for Surveys (ACS) as part of the ACS Nearby Galaxy Survey Treasury (ANGST) program. The data cover the radial extent of the major axis of the disk out to 6 kpc, or ~6 scale lengths. The outer disk was imaged to a depth of M_F606W ~ 1, and an inner field was imaged to the crowding limit at a depth of M_F606W ~ -1. Through detailed analysis and modeling of these CMDs we have reconstructed the star formation history of the stellar populations currently residing in these portions of the galaxy, finding similar ancient populations at all radii but significantly different young populations at increasing radii. In particular, outside of the well-measured break in the disk surface brightness profile, the age of the youngest population increases with distance from the galaxy center, suggesting that star formation is shutting down from the outside-in. We use our measured star formation history, along with H I surface density measurements, to reconstruct the surface density profile of the disk during previous epochs. Comparisons between the recovered star formation rates and reconstructed gas densities at previous epochs are consistent with star formation following the Schmidt law during the past 0.5 Gyrs, but with a drop in star formation efficiency at low gas densities, as seen in local galaxies at the present day. The current rate and gas density suggest that rapid star formation in NGC 2976 is currently in the process of ceasing from the outside-in due to gas depletion. This process of outer disk gas depletion and inner disk star formation was likely triggered by an interaction with the core of the M81 group >~1 Gyr ago that stripped the gas from the galaxy halo and/or triggered gas inflow from the outer disk toward the galaxy center.Comment: 22 pages, 14 figures, 2 tables, accepted for publication by Ap

    The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies

    Get PDF
    (Abridged) We use N-body simulations to study the effects that a divergent (i.e. "cuspy") dark matter (DM) profile introduces on the tidal evolution of dwarf spheroidal galaxies (dSphs). Our models assume cosmologically-motivated initial conditions where dSphs are DM-dominated systems on eccentric orbits about a host galaxy composed of a dark halo and a baryonic disc. We find that the resilience of dSphs to tidal stripping is extremely sensitive to the halo cuspiness; whereas dwarfs with a cored profile can be easily destroyed by the host disc, those with cusps always retain a bound remnant. For a given halo profile the evolution of the structural parameters as driven by tides is controlled solely by the total amount of mass lost. This information is used to construct a semi-analytic code that simulates the hierarchical build-up of spiral galaxies assuming different halo profiles and disc masses. We find that tidal encounters with discs tend to decrease the average mass of satellites at all galactocentric radii. Interestingly, satellites accreted before re-ionization (z>6), which may be singled out by anomalous metallicity patterns, survive only if haloes are cuspy. We show that the size-mass relation established from Milky Way (MW) dwarfs strongly supports the presence of cusps in the majority of these systems, as cored models systematically underestimate the masses of the known Ultra-Faint dSphs. Our models also indicate that a massive M31 disc may explain why many of its dSphs fall below the size-mass relationship derived from MW dSphs. We use our models to constrain the mass threshold below which star formation is suppressed in DM haloes, finding that luminous satellites must be accreted with masses above 10^8--10^9 M_sol in order to explain the size-mass relation observed in MW dwarfs.Comment: 17 pages, 14 figures, MNRAS accepted after minor revisio

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Angular Momentum Evolution in Dark Matter Halos

    Full text link
    We have analyzed high resolution N-body simulations of dark matter halos, focusing specifically on the evolution of angular momentum. We find that not only is individual particle angular momentum not conserved, but the angular momentum of radial shells also varies over the age of the Universe by up to factors of a few. We find that torques from external structure are the most likely cause for this distribution shift. Since the model of adiabatic contraction that is often applied to model the effects of galaxy evolution on the dark-matter density profile in a halo assumes angular momentum conservation, this variation implies that there is a fundamental limit on the possible accuracy of the adiabatic contraction model in modeling the response of DM halos to the growth of galaxies.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    The In Vitro, Ex Vivo, and In Vivo Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA

    Get PDF
    RNA technology has the potential to revolutionize vaccination. However, the lack of clear structure-property relationships in relevant biological models mean there is no clear consensus on the chemical motifs necessary to improve RNA delivery. In this work, we describe the synthesis of a series of copolymers based on the self-hydrolyzing charge-reversible polycation poly(dimethylaminoethyl acrylate) (pDMAEA), varying the lipophilicity of the additional co-monomers. All copolymers formed stable polyplexes, showing efficient complexation with model nucleic acids from nitrogen/phosphate (N/P) ratios of N/P = 5, with more hydrophobic complexes exhibiting slower charge reversal and disassembly compared to hydrophilic analogues. The more hydrophobic copolymers outperformed hydrophilic versions, homopolymer controls and the reference standard polymer (polyethylenimine), in transfection assays on 2D cell monolayers, albeit with significantly higher toxicities. Similarly, hydrophobic derivatives displayed up to a 4-fold higher efficacy in terms of the numbers of cells expressing green fluorescent protein (GFP+) cells in ex vivo human skin (10%) compared to free RNA (2%), attributed to transfection enrichment in epithelial cells. In contrast, in a mouse model, we observed the reverse trend in terms of RNA transfection, with no observable protein production in more hydrophobic analogues, whereas hydrophilic copolymers induced the highest transfection in vivo. Overall, our results suggest an important relationship between the vector lipophilicity and RNA transfection in vaccine settings, with polymer biocompatibility potentially a key parameter in effective in vivo protein production

    Adalimumab for Treating Moderate-to-Severe Hidradenitis Suppurativa: An Evidence Review Group Perspective of a NICE Single Technology Appraisal

    Get PDF
    As part of its single technology appraisal (STA) process, the UK National Institute for Health and Care Excellence (NICE) invited the manufacturer of adalimumab (AbbVie) to submit evidence on the clinical effectiveness and cost effectiveness of adalimumab for the treatment of moderate-to-severe hidradenitis suppurativa (HS). The appraisal assessed adalimumab as monotherapy in adult patients with an inadequate response to conventional systemic HS therapy. The School of Health and Related Research Technology Appraisal Group was commissioned to act as the independent Evidence Review Group (ERG). The ERG produced a critical review of the evidence for the clinical effectiveness and cost effectiveness of the technology based on the company’s submission to NICE. The evidence was mainly derived from three randomised controlled trials comparing adalimumab with placebo in adults with moderate-to-severe HS. The clinical-effectiveness review found that significantly more patients achieved a clinical response in the adalimumab groups than in the control groups but that the treatment effect varied between trials and there was uncertainty regarding its impact on a range of other relevant outcomes as well as long-term efficacy. The company’s submitted Markov model assessed the incremental cost effectiveness of adalimumab versus standard care for the treatment of HS from the perspective of the UK NHS and Personal Social Services (PSS) over a lifetime horizon. The original submitted model, including a patient access scheme (PAS), suggested that the incremental cost-effectiveness ratio (ICER) for adalimumab versus standard care was expected to be £16,162 per quality-adjusted life-year (QALY) gained. Following a critique of the model, the ERG’s preferred base case, which corrected programming errors and structural problems surrounding discontinuation rules and incorporated a lower unit cost for HS surgery, resulted in a probabilistic ICER of £29,725 per QALY gained. Based on additional analyses undertaken by the company and the ERG following the publication of the appraisal consultation document (ACD), the Appraisal Committee concluded that the maximum possible ICER for adalimumab compared with supportive care was between £28,500 and £33,200 per QALY gained but was likely to be lower. The Appraisal Committee recommended adalimumab (with the PAS) for the treatment of active moderate-to-severe HS in adults whose disease has not responded to conventional systemic therapy
    corecore