12 research outputs found

    Bacteriophages with the Ability to Degrade Uropathogenic Escherichia coli Biofilms

    Get PDF
    Abstract: Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This OPEN ACCESS Viruses 2012, 4 472 has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages' genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2-12 h of incubation

    Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    Get PDF
    Escherichia coli-associated urinary tract infections (UTIs) are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC) have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages) as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12) which were able to lyse 80.5% of a subset (42) of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation

    Pseudomonas aeruginosa lytic bacteriophage oKMV receptor analysis

    No full text
    status: publishe

    A procedure for systematic identification of bacteriophage–host interactions of P. aeruginosa phages

    Get PDF
    AbstractImmediately after bacteriophage infection, phage early proteins establish optimal conditions for phage infection, often through a direct interaction with host-cell proteins. We implemented a yeast two-hybrid approach for Pseudomonas aeruginosa phages as a first step in the analysis of these – often uncharacterized – proteins. A 24-fold redundant prey library of P. aeruginosa PAO1 (7.32×106 independent clones), was screened against early proteins (gp1 to 9) of ϕKMV, a P. aeruginosa-infecting member of the Podoviridae; interactions were verified using an independent in vitro assay. None resembles previously known bacteriophage–host interactions, as the three identified target malate synthase G, a regulator of a secretion system and a regulator of nitrogen assimilation. Although at least two-bacteriophage infections are non-essential to ϕKMV infection, their disruption has an influence on infection efficiency. This methodology allows systematic analysis of phage proteins and is applicable as an interaction analysis tool for P. aeruginosa

    Genomic Analysis of Pseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the φKMV Subgroup within the T7 Supergroup

    No full text
    Lytic Pseudomonas aeruginosa phages LKD16 and LKA1 were locally isolated and morphologically classified as Podoviridae. While LKD16 adsorbs weakly to its host, LKA1 shows efficient adsorption (k(a) = 3.9 × 10(−9) ml min(−1)). LKA1, however, displays a narrow host range on clinical P. aeruginosa strains compared to LKD16. Genome analysis of LKD16 (43,200 bp) and LKA1 (41,593 bp) revealed that both phages have linear double-stranded DNA genomes with direct terminal repeats of 428 and 298 bp and encode 54 and 56 genes, respectively. The majority of the predicted structural proteins were experimentally confirmed as part of the phage particle using mass spectrometry. Phage LKD16 is closely related to bacteriophage φKMV (83% overall DNA homology), allowing a more thoughtful gene annotation of both genomes. In contrast, LKA1 is more distantly related, lacking significant DNA homology and showing protein similarity to φKMV in 48% of its gene products. The early region of the LKA1 genome has diverged strongly from φKMV and LKD16, and intriguing differences in tail fiber genes of LKD16 and LKA1 likely reflect the observed discrepancy in infection-related properties. Nonetheless, general genome organization is clearly conserved among φKMV, LKD16, and LKA1. The three phages carry a single-subunit RNA polymerase gene adjacent to the structural genome region, a feature which distinguishes them from other members of the T7 supergroup. Therefore, we propose that φKMV represents an independent and widespread group of lytic P. aeruginosa phages within the T7 supergroup
    corecore