284 research outputs found

    In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor

    Full text link
    [EN] The epidermal growth factor receptors EGFR and HER2 are the main targets for tyrosine kinase inhibitors (TKIs). The quinazoline derivative lapatinib (LAP) is used since 2007 as dual TKI in the treatment of metastatic breast cancer and currently, it is used as an oral anticancer drug for the treatment of solid tumors such as breast and lung cancer. Although hepatotoxicity is its main side effect, it makes sense to investigate the ability of LAP to induce photosensitivity reactions bearing in mind that BRAF (serine/threonine-protein kinase B-Raf) inhibitors display a considerable phototoxic potential and that afloqualone, a quinazoline-marketed drug, causes photodermatosis. Metabolic bioactivation of LAP by CYP3A4 and CYP3A5 leads to chemically reactiveN-dealkylated (N-LAP) andO-dealkylated (O-LAP) derivatives. In this context, the aim of the present work is to explore whether LAP and itsN- andO-dealkylated metabolites can induce photosensitivity disorders by evaluating their photo(geno)toxicity through in vitro studies, including cell viability as well as photosensitized protein and DNA damage. As a matter of fact, our work has demonstrated that not only LAP, but also its metaboliteN-LAP have a clear photosensitizing potential. They are both phototoxic and photogenotoxic to cells, as revealed by the 3T3 NRU assay and the comet assay, respectively. By contrast, theO-LAP does not display relevant photobiological properties. Remarkably, the parent drug LAP shows the highest activity in membrane phototoxicity and protein oxidation, whereasN-LAP is associated with the highest photogenotoxicity, through oxidation of purine bases, as revealed by detection of 8-Oxo-dG.This study was funded by the Carlos III Institute (ISCIII) of Health (Grants: PI16/01877, CPII16/00052, ARADyAL RD16/0006/0030) co-funded by European Regional Development Fund, the Spanish Government (RYC-2015-17737, CTQ2017-89416-R,) and Generalitat Valenciana (Prometeo/2017/075). We would also like to thank IIS La Fe Microscopy Unit for technical assistance.García-Laínez, G.; Vayá Pérez, I.; Marín, MP.; Miranda Alonso, MÁ.; Andreu Ros, MI. (2021). In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Archives of Toxicology. 95(1):169-178. https://doi.org/10.1007/s00204-020-02880-6S16917895

    Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA

    Full text link
    [EN] In this work, the attention is focused on UVA-photosensitized reactions triggered by a DNA chromophore-containing lesion, namely 5-formyluracil. This is a major oxidatively generated lesion that exhibits an enhanced light absorption in the UVB-UVA region. The mechanistic study combining photochemical and photobiological techniques shows that irradiation of S-formyluracil leads to a triplet excited state capable of sensitizing formation of cyclobutane pyrimidine dimers in DNA via a triplet-triplet energy transfer. This demonstrates for the first time that oxidatively generated DNA damage can behave as an intrinsic sensitizer and result in an important extension of the active fraction of the solar spectrum with photocarcinogenic potential. Overall, this raises the question of an aggravated photomutagenicity of the 5-formyluracil lesion.The present work was supported by Spanish Government (CTQ2015-70164-P, Severo Ochoa program/SEV-2012-0267, BES-2013-066566, CSIC 2016801007), Instituto de Salud Carlos III (RD16/0006/0030, FIS PI16/01877), Generalitat Valenciana (Prometeo/2017/075).Aparici-Espert, MI.; García-Laínez, G.; Andreu Ros, MI.; Miranda Alonso, MÁ.; Lhiaubet, VL. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology. 13(3):542-547. https://doi.org/10.1021/acschembio.7b01097S54254713

    Efficiency of Antimicrobial Electrospun Thymol-Loaded Polycaprolactone Mats in Vivo

    Get PDF
    Due to the prevalence of antimicrobial resistant pathogens, natural products with long-term antimicrobial activities are considered as potential alternatives. In this work, polycaprolactone (PCL) electrospun fibers with mean diameters around 299 nm and loaded with 14.92 ± 1.31% w/w thymol (THY) were synthesized. The mats had appropriate elongation at break (74.4 ± 9.5%) and tensile strength (3.0 ± 0.5 MPa) to be potentially used as wound dressing materials. In vivo studies were performed using eight to ten week-old male SKH1 hairless mice. The infection progression was evaluated through a semiquantitative method and quantitative polymerase chain reaction. The analyses of post-mortem samples indicated that THY-loaded PCL fibers acted as inhibitors of Staphylococcus aureus ATCC 25923 strain growth being as efficient as chlorhexidine (CLXD). Histopathological and immunohistochemical studies showed that the PCL-THY-treated wounds were almost free of an inflammatory reaction. Therefore, wound dressings containing natural compounds can prevent infection and promote wound healing and prompt regeneration. Copyrigh

    Drug-eluting wound dressings having sustained release of antimicrobial compounds

    Get PDF
    Wound healing is a complex and costly public health problem that should be timely addressed to achieve a rapid and adequate tissue repair avoiding or even eliminating potential pathogenic infection. Chronic infected non-healing wounds represent a serious concern for health care systems. Efficient wound dressings with tailored therapy having the best response and highest safety margin for the management of chronic non-healing wounds are still needed. The use of novel wound dressing materials has emerged as a promising tool to fulfil these requirements. In this work, asymmetric electrospun polycaprolactone (PCL)-based nanofibers (NFs) were decorated with electrosprayed poly(lactic-co-glycolic acid) microparticles (PLGA MPs) containing the natural antibacterial compound thymol (THY) in order to obtain drug eluting antimicrobial dressings having sustained release. The synthesized dressings successfully inhibited the in vitro growth of Staphylococcus aureus ATCC 25923, showing also at the same doses cytocompatibility on human dermal fibroblasts and keratinocyte cultures after treatment for 24 h, which was not observed when using free thymol. An in vivo murine excisional wound splinting model, followed by the experimental infection of the wounds with S. aureus and their treatment with the synthesized dressings, pointed to the reduction of the bacterial load in wounds after 7 days, though the total elimination of the infection was not reached. The findings indicated the relevance of the direct contact between the dressings and the bacteria, highlighting the need to tune their design considering the wound surface and the nature of the antimicrobial cargo contained

    Modulation of argon pressure as an option to control transmittance and resistivity of ZnO:Al films deposited by DC magnetron sputtering: on the dark yellow films at 10<sup>-7</sup> Torr base pressures

    Get PDF
    In a previous paper, we reported that thin films of ZnO:Al [aluminum-zinc oxide (AZO)] deposited after achieving a very low base pressure [from 4.0×10-7 Torr (5.6×10-5 Pa) to 5.7×10-7 Torr (7.6×10-5 Pa)] result dark yellow in color and are resistive. These are undesirable characteristics for the application of AZO thin films as front electrodes in solar cells. However, given the increasingly tendency in the acquisition of equipment that allow us to reach excellent vacuum levels, it is necessary to find the deposition conditions that lead to an improving of transmittance without greatly impacting the electrical properties of materials deposited after achieving these levels of vacuum. In this way, the present work is focused on AZO thin films deposited after achieving a very low base pressure value: 4.2×10-7 Torr (5.6×10-5 Pa). For this, we studied the effect of the variation of the oxygen volume percent in the argon/oxygen mixture (by maintaining the deposition pressure constant) and the effect of deposition pressure with only argon gas on the main properties of AZO thin films. The depositions were done at room temperature on glass substrates by direct-current magnetron sputtering with a power of 120 W (corresponding to a power density of 2.63 W/cm2). As results, we found that the variation of deposition pressure with only argon gas is a good option for the control of optical and electrical properties, since the addition of oxygen, although improves transmittance, greatly impacts on the electrical properties. Furthermore, an interesting correlation was found between the optical and electrical properties and the chemical composition of the AZO films, the latter depending on the argon pressure (for this, a careful X-ray photoelectron spectroscopy analysis was performed). Also, the inverse relationship between crystallinity and deposition rate was confirmed, in which deposition rate inversely depends on argon pressure

    Efficient WO3 photoanodes fabricated by pulsed laser deposition for photoelectrochemical water splitting with high faradaic efficiency

    Get PDF
    In this work, we present a systematic study on the synthesis of monoclinic gamma - WO3 obtained using pulsed laser deposition (PLD). A photocurrent of 2.4 mA/cm2 (60% of the optical maximum for a 2.7 eV gap material) was obtained for films as thick as 18 micro_m. FE-SEM images revealed that WO3 films were actually formed by an array of oriented columns. Efficient hole extraction towards the electrolyte was observed and attributed to a possible accommodation of the electrolyte between the WO3 columns, even for relatively compact films. This feature, combined with the detailed optical absorption and IPCE characterization, allowed us to implement a double-stack configuration of WO3 photoanodes which resulted in a remarkable photocurrent density of 3.1 mA·cm-2 with 1 sun AM1.5G illumination in 0.1 M H2SO4 electrolyte. Faradaic efficiencies of more than 50% was obtained without co-catalyst, which is one the highest values reported for pure WO3. By adding a 3 nm layer of Al2O3 by ALD, a faradaic efficiency of 80% was reached without diminishing the photocurrent density

    Main properties of Al2O3 thin films deposited by magnetron sputtering of an Al2O3 ceramic target at different radio-frequency power and argon pressure and their passivation effect on p-type c-Si wafers

    Full text link
    In this work, 50-nm thick Al2O3 thin films were deposited at room temperature by magnetron sputtering from an Al2O3 ceramic target at different RF power and argon pressure values. The sputtering technique could be preferred to conventional atomic layer deposition for an industrial application, owing to its simplicity, availability, and higher deposition rate. The resulting thin films were characterized by UV/Vis/NIR spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The deposited Al2O3 material was always highly transparent and amorphous in nature. It was found that the O/Al ratio is higher when the Al2O3 layer is deposited at lower RF power or higher argon pressure. Also, some argon incorporation into the films was observed at low deposition pressure. On the other hand, the performance of the previously characterized Al2O3 thin films in the passivation of 2.25-Ωcm p-type float zone c-Si wafer surfaces was evaluated by the quasi-steady-state photoconductance technique. The best effective carrier lifetime value at one-sun illumination, 0.34 ms (corresponding to a surface recombination velocity of 41 cm/s), was obtained with the 50-nm Al2O3 deposited at the higher argon pressure studied, 0.67 Pa (5.0 mTorr), with the lowest RF power studied, 150 W (corresponding to a power density of 3.3 W/cm2), and after an annealing process, in this case at 350ºC for 20 min with forming gas. It was assumed that the reduction of the surface passivation quality at higher RF power or lower argon pressure is a consequence of an increased surface damage, and, probably, to a decrease of the O/Al ratio of the Al2O3 passivation material. These assumptions were confirmed with the obtainment of a lifetime of 0.73 ms (a surface recombination velocity equal to 19 cm/s) with a simple experiment with Al2O3 deposited with progressively varied sputtering conditions started from minimal silicon surface damage conditions: 50 W (corresponding to a power density of 1.1 W/cm2) and 6.67 Pa (50 mTorr). Finally, comments about further improvement of the effective lifetime (up to 1.25 ms, corresponding to a surface recombination velocity of 11 cm/s) with preliminary experiments about the incorporation of an intrinsic hydrogenated amorphous silicon interlayer are included

    Bluefin tuna (Thunnus thynnus) biomass estimation during transfers using acoustic and optic techniques

    Get PDF
    Our results show that the use of an acoustic transducer in transfers offers the possibility of performing an automatic counting with error below 10%, which is decreased to 1.2% after improving structure and algorithms. Moreover, the proposed procedure for automatic sizing using stereoscopic system achieved an accurate estimation of SFL distribution compared to true data from harvests, automatically measuring 20% of the fis

    Automatic Bluefin Tuna (Thunnus thynnus) Biomass Estimation during Transfers Using Acoustic and Computer Vision Techniques

    Get PDF
    In this work, acoustic and computer vision techniques are combined to develop an automatic procedure for biomass estimation of tuna during transfers. A side scan sonar working at 200 kHz and a stereo camera, posi- tioned facing towards the surface to record the ventral aspect of fish, are set as acquisition equipment. Moreover, a floating structure has been devised to place the sensors between cages in transfers, creating a transfer canal that allows data acquisition while fish swim from donor to receiving cage. Biomass assessment is computed by counting transferred tuna and sizing a representative sample of the stock. The number of transferred tuna is automatically deduced from acoustic echograms by means of image processing techniques, whereas tuna size is computed from the stereo videos using our automatic computer vision procedure based on a deformable model of the fish ventral silhouette. The results show that the system achieves automatic tuna counting with error below 10%, achieving around 1% error in the best configuration, and automatic tuna sizing of more than 20% of the stock, with highly accurate Snout Fork Length estimation when compared to true data from harvests. These results fulfil the requirements imposed by International Commission for the Conservation of Atlantic Tunas for compliant transfer operations.Versión del editor1,42

    Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study

    Get PDF
    Background: Identification of effective treatments in severe cases of COVID-19 requiring mechanical ventilation represents an unmet medical need. Our aim was to determine whether the administration of adipose-tissue derived mesenchymal stromal cells (AT-MSC) is safe and potentially useful in these patients. Methods: Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine and/or tocilizumab, among others) were treated with allogeneic AT-MSC. Ten patients received two doses, with the second dose administered a median of 3 days (interquartile range-IQR- 1 day) after the first one. Two patients received a single dose and another patient received 3 doses. Median number of cells per dose was 0.98 × 106 (IQR 0.50 × 106) AT-MSC/kg of recipient's body weight. Potential adverse effects related to cell infusion and clinical outcome were assessed. Additional parameters analyzed included changes in imaging, analytical and inflammatory parameters. Findings: First dose of AT-MSC was administered at a median of 7 days (IQR 12 days) after mechanical ventilation. No adverse events were related to cell therapy. With a median follow-up of 16 days (IQR 9 days) after the first dose, clinical improvement was observed in nine patients (70%). Seven patients were extubated and discharged from ICU while four patients remained intubated (two with an improvement in their ventilatory and radiological parameters and two in stable condition). Two patients died (one due to massive gastrointestinal bleeding unrelated to MSC therapy). Treatment with AT-MSC was followed by a decrease in inflammatory parameters (reduction in C-reactive protein, IL-6, ferritin, LDH and d-dimer) as well as an increase in lymphocytes, particularly in those patients with clinical improvement. Interpretation: Treatment with intravenous administration of AT-MSC in 13 severe COVID-19 pneumonia under mechanical ventilation in a small case series did not induce significant adverse events and was followed by clinical and biological improvement in most subjects. Funding: None.We would like to acknowledge the Instituto de Salud Carlos III (ISCIII) through the project “RD16/0011: Red de Terapia Celular”, from the sub-program RETICS, integrated in the “Plan Estatal de I+D+I 2013-2016” and co-financed by the European Regional Development Fund “A way to make Europe”, groups RD16/0011/0001, -/0002, -/005, -/0013, -/0015, -/0029), the Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Spain and AvanCell-CM (Red de Investigación de Terapia Celular de la Comunidad de Madrid, Spain), for supporting some personnel and networking activities
    corecore