142 research outputs found

    Mutant glycyl-tRNA synthetase (Gars) ameliorates SOD1G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice

    Get PDF
    Background: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. Methodology/Principal findings: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars^{C201R/+} mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars^{C201R/+} mice to two other mutants: the TgSOD1^{G93A} model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1^{Loa}) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1^{Loa/+}; Gars^{C201R/+} double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars^{C201R} mutation significantly delayed disease onset in the SOD1^{G93A}; Gars^{C201R/+} double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. Conclusions/Significance: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains

    Two New Pimelic Diphenylamide HDAC Inhibitors Induce Sustained Frataxin Upregulation in Cells from Friedreich's Ataxia Patients and in a Mouse Model

    Get PDF
    BACKGROUND: Friedreich's ataxia (FRDA), the most common recessive ataxia in Caucasians, is due to severely reduced levels of frataxin, a highly conserved protein, that result from a large GAA triplet repeat expansion within the first intron of the frataxin gene (FXN). Typical marks of heterochromatin are found near the expanded GAA repeat in FRDA patient cells and mouse models. Histone deacetylase inhibitors (HDACIs) with a pimelic diphenylamide structure and HDAC3 specificity can decondense the chromatin structure at the FXN gene and restore frataxin levels in cells from FRDA patients and in a GAA repeat based FRDA mouse model, KIKI, providing an appealing approach for FRDA therapeutics. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to further improve the pharmacological profile of pimelic diphenylamide HDACIs as potential therapeutics for FRDA, we synthesized additional compounds with this basic structure and screened them for HDAC3 specificity. We characterized two of these compounds, 136 and 109, in FRDA patients' peripheral blood lymphocytes and in the KIKI mouse model. We tested their ability to upregulate frataxin at a range of concentrations in order to determine a minimal effective dose. We then determined in both systems the duration of effect of these drugs on frataxin mRNA and protein, and on total and local histone acetylation. The effects of these compounds exceeded the time of direct exposure in both systems. CONCLUSIONS/SIGNIFICANCE: Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACIs for FRDA and provide information for the design of future human trials of these drugs, suggesting an intermittent administration of the drug.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Eukaryotic Initiation Factor 2B (eIF2B) GEF Activity as a Diagnostic Tool for EIF2B-Related Disorders

    Get PDF
    BACKGROUND:In recent years, the phenotypes of leukodystrophies linked to mutations in the eukaryotic initiation factor 2B genes have been extended, classically called CACH/VWM (Childhood ataxia with cntral hypomyélination/vanishing white matter disorder). The large clinical spectrum observed from the more severe antenatal forms responsible for fetal death to milder adult forms with an onset after 16 years old and restricted to slow cognitive impairment have lead to the concept of eIF2B-related disorders. The typical MRI pattern with a diffuse CSF-like aspect of the cerebral white matter can lack particularly in the adult forms whereas an increasing number of patients with clinical and MRI criteria for CACH/VWM disease but without eIF2B mutations are found. Then we propose the use of biochemical markers to help in this difficult diagnosis. The biochemical diagnosis of eIF2B-related disorder is difficult as no marker, except the recently described asialotransferrin/transferrin ratio measured in cerebrospinal fluid, has been proposed and validated until now. Decreased eIF2B GEF activity has been previously reported in lymphoblastoid cell lines from 30 eIF2B-mutated patients. Our objective was to evaluate further the utility of this marker and to validate eIF2B GEF activity in a larger cohort as a specific diagnostic test for eIF2B-related disorders. METHODOLOGY/PRINCIPAL FINDINGS:We performed eIF2B GEF activity assays in cells from 63 patients presenting with different clinical forms and eIF2B mutations in comparison to controls but also to patients with defined leukodystrophies or CACH/VWM-like diseases without eIF2B mutations. We found a significant decrease of GEF activity in cells from eIF2B-mutated patients with 100% specificity and 89% sensitivity when the activity threshold was set at < or =77.5%. CONCLUSION:These results validate the measurement of eIF2B GEF activity in patients' transformed-lymphocytes as an important tool for the diagnosis of eIF2B-related disorders

    Clinical characteristics of COVID-19 in older adults. A retrospective study in long-term nursing homes in Catalonia

    Get PDF
    Coronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Residències d'avis; Taxes de mortalitatCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Hogares de ancianos; Tasas de mortalidadCoronavirus SARS-CoV-2; COVID-19; 2019-nCoV; Nursing homes; Death ratesThe natural history of COVID-19 and predictors of mortality in older adults need to be investigated to inform clinical operations and healthcare policy planning. A retrospective study took place in 80 long-term nursing homes in Catalonia, Spain collecting data from March 1st to May 31st, 2020. Demographic and clinical data from 2,092 RT-PCR confirmed cases of SARS-CoV-2 infection were registered, including structural characteristics of the facilities. Descriptive statistics to describe the demographic, clinical, and molecular characteristics of our sample were prepared, both overall and by their symptomatology was performed and an analysis of statistically significant bivariate differences and constructions of a logistic regression model were carried out to assess the relationship between variables. The incidence of the infection was 28%. 71% of the residents showed symptoms. Five major symptoms included: fever, dyspnea, dry cough, asthenia and diarrhea. Fever and dyspnea were by far the most frequent (50% and 28%, respectively). The presentation was predominantly acute and symptomatology persisted from days to weeks (mean 9.1 days, SD = 10,9). 16% of residents had confirmed pneumonia and 22% required hospitalization. The accumulated mortality rate was 21.75% (86% concentrated during the first 28 days at onset). A multivariate logistic regression analysis showed a positive predictive value for mortality for some variables such as age, pneumonia, fever, dyspnea, stupor refusal to oral intake and dementia (p<0.01 for all variables). Results suggest that density in the nursing homes did not account for differences in the incidence of the infection within the facilities. This study provides insights into the natural history of the disease in older adults with high dependency living in long-term nursing homes during the first pandemic wave of March-May 2020 in the region of Catalonia, and suggests that some comorbidities and symptoms have a strong predictive value for mortality.The authors(s) received to specific funding for this work

    Biomarker Research and Development for Coronavirus Disease 2019 (COVID-19): European Medical Research Infrastructures Call for Global Coordination

    Get PDF
    An effective response to the coronavirus disease 2019 (COVID-19) pandemic requires a better understanding of the biology of the infection and the identification of validated biomarker profiles that would increase the availability, accuracy, and speed of COVID-19 testing. Here, we describe the strategic objectives and action lines of the European Alliance of Medical Research Infrastructures (AMRI), established to improve the research process and tackle challenges related to diagnostic tests and biomarker development. Recommendations include: the creation of a European taskforce for validation of novel diagnostic products, the definition and promotion of criteria for COVID-19 samples biobanking, the identification and validation of biomarkers as clinical endpoints for clinical trials, and the definition of immune biomarker signatures at different stages of the disease. An effective management of the COVID-19 pandemic is possible only if there is a high level of knowledge and coordination between the public and private sectors within a robust quality framework.Peer reviewe

    Expression of Glycogen Phosphorylase Isoforms in Cultured Muscle from Patients with McArdle's Disease Carrying the p.R771PfsX33 PYGM Mutation

    Get PDF
    Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial

    Digitalisation and COVID-19: The Perfect Storm

    Get PDF
    \u201cA ship in the harbour is safe, but that is not what ships are built for,\u201d observed that sage 19th century philosopher William Shedd. In other words, technology of high potential is of little value if the potential is not exploited. As the shape of 2020 is increasingly defined by the coronavirus pandemic, digitalisation is like a ship loaded with technology that has a huge capacity for transforming mankind\u2019s combat against infectious disease. But it is still moored safely in harbour. Instead of sailing bravely into battle, it remains at the dockside, cowering from the storm beyond the breakwaters. Engineers and fitters constantly fine-tune it, and its officers and deckhands perfect their operating procedures, but that promise is unfulfilled, restrained by the hesitancy and indecision of officialdom. Out there, the seas of the pandemic are turbulent and uncharted, and it is impossible to know in advance everything of the other dangers that may lurk beyond those cloudy horizons. However, the more noble course is for orders to be given to complete the preparations, to cast off and set sail, and to join other vessels crewed by valiant healthcare workers and tireless researchers, already deeply engaged in a rescue mission for the whole of the human race. It is the destiny of digitalisation to navigate those oceans alongside other members of that task force, and the hour of destiny has arrived. This article focuses on the potential enablers and recommendation to maximise learnings during the era of COVID-19

    A Transcriptomic Approach to Search for Novel Phenotypic Regulators in McArdle Disease

    Get PDF
    McArdle disease is caused by lack of glycogen phosphorylase (GP) activity in skeletal muscle. Patients experience exercise intolerance, presenting as early fatigue and contractures. In this study, we investigated the effects produced by a lack of GP on several genes and proteins of skeletal muscle in McArdle patients. Muscle tissue of 35 patients and 7 healthy controls were used to identify abnormalities in the patients' transcriptomic profile using low-density arrays. Gene expression was analyzed for the influence of variables such as sex and clinical severity. Differences in protein expression were studied by immunoblotting and 2D electrophoresis analysis, and protein complexes were examined by two-dimensional, blue native gel electrophoresis (BN-PAGE). A number of genes including those encoding acetyl-coA carboxylase beta, m-cadherin, calpain III, creatine kinase, glycogen synthase (GS), and sarcoplasmic reticulum calcium ATPase 1 (SERCA1), were found to be downregulated in patients. Specifically, compared to controls, GS and SERCA1 proteins were reduced by 50% and 75% respectively; also, unphosphorylated GS and SERCA1 were highly downregulated. On BN-PAGE analysis, GP was present with GS in two muscle protein complexes. Our findings revealed some issues that could be important in understanding the physiological consequences of McArdle disease: (i) SERCA1 downregulation in patients could result in impaired calcium transport in type II (fast-twitch) muscle fibers, leading to early fatigability during exercise tasks involving type II fibers (which mostly use glycolytic metabolism), i.e. isometric exercise, lifting weights or intense dynamic exercise (stair climbing, bicycling, walking at a very brisk pace), (ii) GP and GS were found together in two protein complexes, which suggests a new regulatory mechanism in the activity of these glycogen enzymes

    Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene

    Get PDF
    In 2001, we reported linkage of an autosomal dominant form of limb-girdle muscular dystrophy, limb-girdle muscular dystrophy 1F, to chromosome 7q32.1-32.2, but the identity of the mutant gene was elusive. Here, using a whole genome sequencing strategy, we identified the causative mutation of limb-girdle muscular dystrophy 1F, a heterozygous single nucleotide deletion (c.2771del) in the termination codon of transportin 3 (TNPO3). This gene is situated within the chromosomal region linked to the disease and encodes a nuclear membrane protein belonging to the importin beta family. TNPO3 transports serine/arginine-rich proteins into the nucleus, and has been identified as a key factor in the HIV-import process into the nucleus. The mutation is predicted to generate a 15-amino acid extension of the C-terminus of the protein, segregates with the clinical phenotype, and is absent in genomic sequence databases and a set of >200 control alleles. In skeletal muscle of affected individuals, expression of the mutant messenger RNA and histological abnormalities of nuclei and TNPO3 indicate altered TNPO3 function. Our results demonstrate that the TNPO3 mutation is the cause of limb-girdle muscular dystrophy 1F, expand our knowledge of the molecular basis of muscular dystrophies and bolster the importance of defects of nuclear envelope proteins as causes of inherited myopathies
    • …
    corecore