2,643 research outputs found

    Extensions and applications of a second-order landsurface parameterization

    Get PDF
    Extensions and applications of a second order land surface parameterization, proposed by Andreou and Eagleson are developed. Procedures for evaluating the near surface storage depth used in one cell land surface parameterizations are suggested and tested by using the model. Sensitivity analysis to the key soil parameters is performed. A case study involving comparison with an "exact" numerical model and another simplified parameterization, under very dry climatic conditions and for two different soil types, is also incorporated

    A second-order Budkyo-type parameterization of landsurface hydrology

    Get PDF
    A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature

    Effects of market default risk on index option risk-neutral moments

    Get PDF
    We investigate the relative importance of market default risk in explaining the time variation of the S&P 500 Index option-implied risk-neutral moments. The results demonstrate that market default risk is positively (negatively) related to the index risk-neutral volatility and skewness (kurtosis). These relations are robust in the presence of other factors relevant to the dynamics and microstructure nature of the spot and option markets. Overall, this study sheds light on a set of economic determinants which help to understand the daily evolution of the S&P 500 Index option-implied risk-neutral distributions. Our findings offer explanations of why theoretical predictions of option pricing models are not consistent with what is observed in practice and provide support that market default risk is important to asset pricing

    Mechanisms of migraine as a chronic evolutive condition

    Get PDF

    A Variational Recurrent Neural Network for Session-Based Recommendations using Bayesian Personalized Ranking

    Get PDF
    This work introduces VRNN-BPR, a novel deep learning model, which is utilized in session-based Recommender systems tackling the data sparsity problem. The proposed model combines a Recurrent Neural Network with an amortized variational inference setup (AVI) and a Bayesian Personalized Ranking in order to produce predictions on sequence-based data and generate recommendations. The model is assessed using a large real-world dataset and the results demonstrate its superiority over current state-of-the-art techniques

    Spontaneous scalarization in generalized scalar-tensor theory

    Get PDF
    Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyonic instability at the linear level, which is eventually quenched due to the effect of nonlinear terms. In this paper, we identify all of the terms in the Horndeski action that contribute to the (effective) mass term in the linearized equations and, hence, can cause or contribute to the tachyonic instability that triggers scalarization

    The case for using the repeatability coefficient when calculating test-retest reliability

    Get PDF
    The use of standardised tools is an essential component of evidence-based practice. Reliance on standardised tools places demands on clinicians to understand their properties, strengths, and weaknesses, in order to interpret results and make clinical decisions. This paper makes a case for clinicians to consider measurement error (ME) indices Coefficient of Repeatability (CR) or the Smallest Real Difference (SRD) over relative reliability coefficients like the Pearson’s (r) and the Intraclass Correlation Coefficient (ICC), while selecting tools to measure change and inferring change as true. The authors present statistical methods that are part of the current approach to evaluate test–retest reliability of assessment tools and outcome measurements. Selected examples from a previous test–retest study are used to elucidate the added advantages of knowledge of the ME of an assessment tool in clinical decision making. The CR is computed in the same units as the assessment tool and sets the boundary of the minimal detectable true change that can be measured by the tool

    Structural Change in (Economic) Time Series

    Get PDF
    Methods for detecting structural changes, or change points, in time series data are widely used in many fields of science and engineering. This chapter sketches some basic methods for the analysis of structural changes in time series data. The exposition is confined to retrospective methods for univariate time series. Several recent methods for dating structural changes are compared using a time series of oil prices spanning more than 60 years. The methods broadly agree for the first part of the series up to the mid-1980s, for which changes are associated with major historical events, but provide somewhat different solutions thereafter, reflecting a gradual increase in oil prices that is not well described by a step function. As a further illustration, 1990s data on the volatility of the Hang Seng stock market index are reanalyzed.Comment: 12 pages, 6 figure
    corecore