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Effects of Market Default Risk on  

Index Option Risk-Neutral Moments 

 

 

Abstract 

We investigate the relative importance of market default risk in explaining the time variation 

of the S&P 500 Index option-implied risk-neutral moments. The results demonstrate that 

market default risk is positively (negatively) related to the index risk-neutral volatility and 

skewness (kurtosis). These relations are robust in the presence of other factors relevant to the 

dynamics and microstructure nature of the spot and option markets. Overall, this study sheds 

light on a set of economic determinants which help to understand the daily evolution of the 

S&P 500 Index option-implied risk-neutral distributions. Our findings offer explanations of 

why theoretical predictions of option pricing models are not consistent with what is observed 

in practice and provide support that market default risk is important to asset pricing.   
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1. Introduction 

Firm level default risk encompasses vital information of true economic activity 

regarding a firm’s ability to generate enough operating cash flow to meet its future debt 

obligations. Default risk captures financial health at the firm level and, when aggregated at the 

economy level, should reflect market-wide economic prospects. For example, when consumer 

confidence is high, aggregate consumption should be higher, contributing to higher operating 

cash flows and lower levels of default risk for all firms. Default risk is also lower when 

macroeconomic conditions allow credit expansion that could subsequently stimulate 

economic growth. Such claims are supported by empirical evidence. Denis and Denis (1995), 

for instance, show that default risk is linked to broader economic factors, such as 

macroeconomic and regulatory developments and upcoming events in the fixed income and 

money markets (i.e., the collapse of the junk bond market and the credit crunch of 1990). 

Chen (1991) and Chan et al. (1998), document that a market default premium index is an 

indicator of the current health of the economy and relates to the future growth of economic 

activity. Vassalou and Xing (2004) document that market-wide default risk varies greatly with 

the business cycle and that it increases substantially during recessions. Considering all prior 

evidence together, if default risk is systematic and sheds light on particular market-wide 

economic issues, then, immediately, this information should also be impounded in option 

prices. Indeed, this study’s empirical findings support the notion that a market default 

likelihood index that is computed by aggregating firm level default risk information, helps 

explain time variation in the daily risk-neutral distributions of the Standard & Poor’s (S&P) 

500 Index options. 

 The literature that investigates the relation between default risk and implied volatility 

skew is rather limited and mainly concentrated on equity options. On theoretical grounds, 

Toft and Prucyk (1997) show that the presence of leverage can give rise to a monotonically 

downward implied volatility curve, whereas the steepness of the smile depends on the level of 
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leverage.
1
 More recently, Geske and Zhou (2012) show that the leverage effect causes option-

implied volatility to be both stochastic and inversely related to the level of the asset price. On 

empirical grounds, Dennis and Mayhew (2002), as well as Taylor et al. (2009), document that 

firms with more leverage have less negative risk-neutral skewness. It is therefore intriguing to 

investigate whether the relation between leverage, as captured by the firm’s default risk, and 

the shape of the implied volatility curve, as captured by higher-order risk-neutral moments, 

extends to the aggregate level as well. Such research for S&P 500 Index options is rather 

unexploited and merits further analysis. We primarily address this gap by carrying out an 

empirical analysis in the period 1998– 2007. 

 By and large, the findings of the abovementioned studies suggest a strong link 

between firm leverage and higher-order risk-neutral moments as implied by equity options. 

Then, an obvious question immediately emerges: since we already know that there is a link 

between leverage and the risk-neutral moments for individual stocks, so why shouldn’t there 

be (exactly) the same link at the aggregate level as well? Prior research shows that the pricing 

structure of individual equity options is flatter compared with that of the market index. In 

particular, Bakshi et al. (2003) document that individual stocks are mildly left skewed (or 

even positively skewed), while index return distributions are heavily and persistently left 

skewed (see also, Bollen and Whaley, (2004)). Bakshi et al. (2003) note that as long as the 

idiosyncratic returns of individual stocks are less negatively skewed than the market, one can 

expect to find a difference in the risk-neutral skewness of stock options compared to those of 

index options. This merely reflects the fact that the economic sources of risk-neutral moments 

can be different between equity and index options. Hence, empirical relations that may hold 

true in the case of equity options should not necessarily extend in the same manner to index 

options. Investigating the link between market default risk and risk-neutral distributions as 

implied by the S&P 500 Index options stays an open research question whose investigation is 

likely to be useful to both scholars and practitioners.  

                                                 
1
 The terms implied volatility skew(s), implied volatility curve(s), and risk-neutral distribution(s) are 

used interchangeably in this study. 
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 We proxy market default risk with a market default likelihood index (MDLI) that is 

computed by aggregating the daily probability-to-default values for all non-financial firms 

included in the S&P 500 Index portfolio, where firm-specific probability-to-default values are 

computed with the Merton (1974) distance-to-default (DD) model. Overall, we find strong 

and robust evidence that the MDLI measure is an important economic determinant of the 

daily S&P 500 Index option-implied risk-neutral volatility. Figlewski and Wang (2000), 

using monthly returns data and quarterly book values of debt, find a leverage effect for the 

S&P 100 Index options, but only in down markets. In contrast, based on the MDLI that, by 

nature, is a market-based proxy of leverage, we find a pronounced leverage effect, even when 

the S&P 500 Index is rising. Furthermore, we examine how market default risk relates to the 

index risk-neutral skewness and kurtosis. More importantly, though, we present evidence to 

support the notion that the relations reported at the firm level between leverage and the shape 

of equity option-implied volatility curves (in particular risk-neutral skewness) extend in the 

same manner to the index option-implied volatility curves under our MDLI measure.  

 In addition and equally important, we investigate other economic determinants that 

may affect the risk-neutral distributions of the S&P 500 Index. Prior literature documents that 

the shape of index-implied volatility curves is significantly affected by economic variables 

not included in the milestone Black–Scholes (1973) model or other elaborated parametric 

models that incorporate additional risk factors (Peña et al. (1999); Amin et al. (2004); Bollen 

and Whaley (2004); Han (2008)).
2
 In that respect, along with the MDLI, we also find 

evidence that economic determinants relevant to: (i) market uncertainty, (ii) trading activity 

and the direction of the underlying asset’s return, (iii) options trading activity and hedging 

pressure, and (iv) the persistence of the implied volatility skew, affect the risk-neutral 

distributions of the S&P 500 Index options. 

 The main empirical evidence of our study suggests that market default risk, as 

captured by the MDLI measure, is a key economic determinant of the S&P 500 Index option-

                                                 
2
 Recent developments in this area relate to option pricing models that admit stochastic volatility or 

stochastic volatility and jump risk factors (Heston (1993); Bakshi et al. (1997); Pan (2002)).  
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implied risk-neutral distributions. In that sense, it should affect the market’s perceptions 

about the future growth of the economy and may also have a significant effect on the shape of 

the physical distribution of future market returns. The findings of our study also have 

practical implications: as suggested by Shimko (2009), the recent financial crisis has 

highlighted the importance of identifying new risk indicators, such as the MDLI measure 

proposed in this study, which can be used by investors to forecast potential market downturns 

and adjust their investment decisions accordingly. 

 The following section explains how to compute the MDLI measure and discusses the 

methodology used to extract the risk-neutral moments. Then, Section 3 reviews the different 

datasets. Section 4 discusses the results. Finally, Section 5 presents our conclusions. 

 

2. Methodology: Market Default Likelihood Index and Risk-Neutral Moments 

 We assert that probability-to-default computed via the Merton DD model is an 

adequate proxy of firm-specific default risk for computing the MDLI measure. First, the 

Merton DD model is parsimonious and estimated using market variables that are forward 

looking and reflect investors’ expectations about future economic prospects. This is most 

relevant for our analysis, since information embedded in option data is forwarding looking as 

well. Second, Vassalou and Xing (2004) and Bharath and Shumway (2008) support that the 

model is able to capture timely information about default risk faster than traditional rating 

models and econometric approaches that rely on accounting ratio-based data (see also Du and 

Hansz (2009)). Third, the Merton DD model can produce default risk estimates on a daily 

basis, for every firm in our sample and at any given point in time. Moreover, the Merton DD 

model is neither a time- nor a sample-specific estimator, since it can be estimated 

independently for any firm.
3
 Such capability coincides with the needs of our analysis. 

                                                 
3
 Companies included in the S&P 500 Index portfolio operate in leading industries of the U.S. 

economy and, by nature, have very high market capitalization, high financial viability, and high prices 

per share. Campbell et al. (2008) report that financially distressed firms tend to be relatively small, 

have severely low financial viability, and tend to trade at very low prices per share. Therefore, it is 

highly unlikely that traditional econometric models that are typically developed on a sample of 
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 Description of the Merton DD model is presented in Appendix A. As illustrated in 

Eq. (A.7), the firm-specific probability-to-default value, Merton , is computed after applying 

the normal cumulative distribution, N(.), to the distance-to-default measure, DD, as follows: 

)(Merton DD . 

DD as illustrated in Eq. (A.6) is a measure of the difference between the asset value of the 

firm and the face value of its debt, scaled by the standard deviation of the firm’s asset value. 

This study solves Eqs. (A.3) and (A.5) simultaneously via a numerical nonlinear root-finding 

algorithm following the implementation of the Merton DD model as in Bharath and 

Shumway (2008). We do that for two reasons. First, the simultaneous estimation scheme is 

straightforward and is considered to be a sufficient approach for the given problem. Second, 

and more importantly, the empirical results of Bharath and Shumway (2008) support that the 

simultaneous approach has better out-of-sample predicting performance for the probability-

to-default than a complicated iterative procedure that uses historical returns data to calibrate 

the model. 

 

2.1 Market Default Likelihood Index (MDLI) 

 We consider three alternative cases where Eqs. (A.3) and (A.5) are solved 

simultaneously, but every time a different expected return on the firm’s total assets, V , is 

used to compute the probability-to-default value, Merton , as illustrated in Eq. (A.7). The first 

two cases are similar to the alternative estimators considered by Bharath and Shumway 

(2008). The first predictor is EV r
Merton , where the expected return on the firm’s assets is equal 

to the firm’s stock return over the previous year, Er .
4
 The second estimator is FV r

Merton , where 

                                                                                                                                            
bankrupt and non-bankrupt firms would provide default risk estimates superior to the Merton DD 

model in our sample. 

 
4
 Bharath and Shumway (2008) use Er  to compute a naïve probability-to-default measure (denoted as 

naiveπ  in their study). The naïve estimator approximates the functional form of the Merton DD 

probability-to-default and avoids solving any equations or estimating any difficult quantities in its 
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the prevailing risk-free rate, Fr , is used as the expected return on the firm’s assets. This 

default risk estimator resembles closely to the estimator denoted as 
simulπMerton  in Bharath and 

Shumway (2008). The third estimator, denoted by GV r
Merton , explores the fact that the 

expected return on the firm’s assets can be expressed as a function of hedge parameters (i.e., 

Greek letters) computed via Eq. (A.3) (see Appendix B for the analytic formulas to determine 

Gr ). This estimator has not been considered by prior studies, such as those of Bharath and 

Shumway (2008), Campbell et al. (2008), and Vassalou and Xing (2004). 

We proxy the daily market default risk with the MDLI measure that is computed by 

aggregating firm-specific probability-to-default values as follows: 

                                MDLI: ),(
1
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n

t
t

VV

n

i

q

t

q







 ,  (1) 

where tn  denotes the number of non-financial firms included in the S&P 500 Index portfolio 

on day t and ),(Merton ti
qV 

  represents the probability-to-default value computed for firm i on 

day t using the Merton DD model, with },,{ GFE rrrq .  

We exclude all financial firms because capital structure and leverage time evolution 

for such firms have a totally different context compared to non-financial (i.e., commercial and 

industrial) firms. First, high leverage which is normal for financial firms does not necessarily 

imply high financial distress as with the case of non-financial firms where high leverage 

mostly relates to high financial distress positions (see Fama and French, 1992). Second, it is 

common to observe the liabilities of non-financial firms to increase as they become more 

distressed while the liabilities of financial institutions show a tendency to decrease as these 

firms become more distressed. Therefore, by using only the non-financial firms included in 

the S&P 500 portfolio we rely on a homogeneous sample of capital structure choices which 

allows us to get an informative proxy for the aggregated market default risk level that would 

better link default rates on the macroeconomic state of the economy.  

                                                                                                                                            
construction. Without presenting the empirical evidence, all results we reach in our analysis are robust 

and remain unaltered when we employ the Bharath and Shumway (2008) naïve estimator.   
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2.2 Risk-Neutral Moments of the S&P 500 Index Returns 

 Bakshi et al. (2003) provide a model-free procedure that allows one to extract the 

volatility, skewness, and kurtosis of the risk-neutral return distribution from a set of out-the-

money call and put options. Higher-order risk-neutral moments are expressed in terms of the 

prices of payoffs that depend on future stock prices, namely a quadratic, a cubic, and a quartic 

contract. This method has gained significant recognition (e.g., Dennis and Mayhew (2002); 

Han (2008); Chang et al. (2012); Neumann and Skiadopoulos (2013)) since it allows one to 

extract the implied risk-neutral moments without the need to impose any specific assumptions 

on the underlying asset’s stochastic process. The resulting formulas for extracting the risk-

neutral moments are given in Appendix C. 

 Estimation of the risk-neutral moments follows previous literature, particularly the 

approach in Chang et al. (2012). Risk-neutral moments are computed by integrating over 

moneyness. Yet, in practice, options with a certain τ-period maturity are only observed at 

discrete price intervals. Therefore, each trading day t, to obtain a τ-period continuum of 

implied volatilities, we interpolate the available ones using a cubic spline across the 

moneyness levels SK / , always confining the interpolated values between the maximum and 

minimum available strike prices (where K  is the option strike price and S  is the S&P 500 

Index spot value). For moneyness levels outside the available strike prices, we adopt a 

horizontal extrapolation where implied volatility for the lowest (highest) available strike price 

is used for moneyness levels below (above) the available ones. This procedure allows us to 

generate 1000 τ-period implied volatilities for SK /  between 0.01 and 3.00. 

 In the spirit of prior studies (Dennis and Mayhew (2002); Han (2008); Neumann and 

Skiadopoulos (2013)), to avoid the effect of the shrinking time to maturity on the daily 

evolution of risk-neutral moments as time goes by, we base our analysis on the 30-, 60- and 

91-day constant maturity S&P 500 risk-neutral volatility, skewness, and kurtosis. To extract 

the constant maturity moments, for any of the 1000 τ-period implied volatilities computed 

from the previous step, we apply cubic splines to interpolate across volatilities in the time 
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dimension with a target maturity of either 30, 60, or 91 days. This results in a (new) set of 

1000 implied volatilities with the desired maturity, which are subsequently converted into a 

fine grid of out-of-money call ( 1/ SK ) and out-of-money put ( 1/ SK ) option prices.
5
 

Finally, the fine grid of option prices is then used to compute the option-implied risk-neutral 

moments based on formulas (C.4)–(C.6) using the trapezoidal numerical integration. To 

perform these calculations we use all available option data with maturities of less than 180 

days. Only option maturities that include at least two out-of-money calls and two out-of-

money puts are used. In addition, if the desired maturity is below the smallest available τ-

period maturity, the constant maturity implied moments are not computed. 

 

3. Data 

3.1 Merton DD Model - Firm Level Data 

 We use firms in the Compustat Industrial files to obtain quarterly accounting data, 

and the Center for Research in Security Prices (CRSP) to obtain daily stock return data. To 

estimate the market default probabilities, we find the set of firms listed in the S&P 500 Index 

at the end of each calendar year and exclude all the financial ones (Standard Industrial 

Classification codes 6000–6999). We also make sure that the firms’ CRSP permanent 

identifiers do not change, to avoid using companies that were involved in significant 

corporate events. Moreover, we eliminate firm observations with a negative book value of 

equity. 

 Similar to Bharath and Shumway (2008) we estimate equity volatility, E , to be the 

annualized percent standard deviation of daily returns using the prior year’s stock data, while 

for risk-free rate, Fr , we use the one-year Treasury constant maturity rate obtained from 

Federal Reserve. The market value of each firm’s equity, E , is computed by multiplying the 

firm’s shares outstanding by its stock price at the end of each day. Following Vassalou and 

                                                 
5
 We use the Black–Scholes model to convert implied volatilities into option prices. As noted by Chang 

et al. (2012), the use of the Black–Scholes model serves only as a “translation mechanism” and does 

not imply that the model correctly prices options.  
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Xing (2004) and Bharath and Shumway (2008), we define the book value of debt, F , to be 

the debt in current liabilities (Compustat data item 45) plus one-half of the long-term debt 

(Compustat data item 51), while the time forecasting horizon is set to be one year.
6
 Before 

calculating the firms’ assets market value, V , and volatility, V , we follow Bharath and 

Shumway (2008) and winsorize all observations at the 1
st
 and 99

th
 percentiles of the 

associated cross-sectional distribution. Finally, to avoid look-ahead bias, we align each firm’s 

fiscal year appropriately with the calendar year and then lag accounting data by two months. 

Unlike many prior studies, this treatment ensures that all accounting data needed for the 

construction of the market default risk measures are publicly available before each estimation 

case. The final data set used with the Merton DD model has 994,538 firm–days with 

complete data. 

 

3.2 Options Data 

 We consider all S&P 500 Index call and put options for the period 1998–2007 (2,514 

trading days) obtained from Commodity Systems Inc. We use the midpoint of the option bid–

ask spread since, as noted by Dumas et al. (1998), using bid–ask midpoints rather than trade 

prices reduces noise in the cross-sectional estimation of implied volatilities. Option time to 

maturity is computed assuming 252 days per year. We apply cubic splines on one-, three-, 

six-, and 12-month constant maturity T-bill rates to match each case with a continuous 

interest rate that best corresponds to the option’s maturity. In addition, the S&P 500 Index 

level is adjusted for dividends (collected from Datastream). 

 The final dataset is created after applying the following filtering rules (Bakshi et al. 

(1997); Han (2008); Andreou et al. (2014)). First, all observations that have zero trading 

volume are eliminated, since they do not represent actual trades. Second, options that violate 

either the lower or the upper arbitrage option pricing bounds are also eliminated. Likewise, 

                                                 
6
 We follow Campbell et al. (2008) for all cases where F  cannot be estimated from the data. 

Specifically, if F  is missing, we use TLTLFmedianF *)/( , where TL  stands for total liabilities 

(Compustat data item 54). When 0F , we use TLTLFmedianF *)/( , where now we calculate the 

median only for small but nonzero values of F  ( 01.00  F ).     
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options with price quotes of less than 1.0 index point, with implied volatility lower than 5% 

or higher than 70%, and with midpoint price lower than the bid–ask spread difference are 

excluded. Third, all options with less than five or more than 253 trading days to expiration are 

discarded to avoid cases where trading illiquidity may be present. Finally, only observations 

with S/K between 0.75 and 1.25 are included in the analysis. The final dataset has a total of 

373,077 contracts, of which 172,737 are call options and 200,340 are put options. 

 

4. Discussion of Results 

4.1 Alternative Market Default Likelihood Measures for the S&P 500 Index 

Table 1 provides summary statistics for variables involved in the estimation of the 

different measures of default risk. Panel A of Table 1 provides information computed by 

using all firms’ daily observations, while Panel B demonstrates the alternative MDLI 

measures computed by aggregating on a daily basis the probability-to-default values across 

firms using Eq. (1). There are many interesting observations to make from this table. First, 

the mean equity value of all firms included in our sample is E = 20,126.9, the mean book 

value of the debt is F = 2,272.3 (thus F / E =0.113), and the mean value of net income over 

the book value of total assets, TANI / , is 0.015. The corresponding figures reported in 

Bharath and Shumway (2008) are E = 808.80 and F = 229.92 (thus F / E =0.284) with 

TANI / = -1.08. Our point estimate for the mean value of EV r



Merton  is 2.2%, which is almost 

five times smaller than the estimate of 10.95% reported in Bharath and Shumway (2008). 

Apparently the differences in these figures can be explained by the fact that compared to the 

Bharath and Shumway (2008) study, our sample spans a different time period with the 

incidence of bankruptcy to be significantly different between the two studies (see also 

supporting evidence of this argument in Table I of Campbell et al., 2008). Our point estimates 

for the mean value of the other two MDLI measures are significantly different from one 

another and much lower than EV r



Merton . Specifically, the value of FV rμ 

Merton  is 0.3%, while the 
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value of GV r




Merton  is 1.1%. These discrepancies reflect the mean differences of the alterative 

measures used to proxy the expected return on the firm’s assets, V . 

[Table 1, here] 

Table 2 Panel A reports the pairwise correlation coefficients between the daily levels of the 

alternative MDLI measures; it also exhibits their relation to the level of the S&P 500 Index 

(SP500). Likewise, Panel B tabulates the correlation coefficients regarding the daily changes 

of alternative MDLI measures and index returns (RET). It is evident that all MDLI measures 

preserve a significant negative relation to the contemporaneous index level and return. Such a 

relation is expected by virtue of the leverage effect (Figlewski and Wang (2000)). In support 

of this, Figure 1 depicts a graphical representation of the relation between the market implied 

value of debt to market‐value of equity (i.e., market Debt-to-Equity ratio) plotted against the 

level of the S&P 500 index. The firm level market-value of debt is determined as the 

difference between the market-value of the firm’s total assets (V  ― derived daily as the 

solution of the Merton DD model when estimating EV rMerton  for each firm observation) and the 

market-value of its equity ( E ― computed by multiplying the firm’s shares outstanding by its 

stock price at the end of each day). Based on the assumptions behind the estimated Merton 

DD model, values of debt presented in this graph reflect the market-values of debt in current 

liabilities plus one-half of the long-term debt obligations. As such, the market-value of Debt-

to-Equity ratio ranges from a minimum of 8.47% in August of 2000, to a maximum of 17.8% 

in October of 2002. It is evident that the two time series in Figure 1 tend to move in the 

opposite direction generating a correlation coefficient of -0.885, as expected under the 

leverage effect. Moreover, Figure 2 depicts a graphical representation between the market 

Debt-to-Equity ratio plotted against the MDLI measure, EV r



Merton . This figure demonstrates 

that EV r



Merton  tends to move in lockstep with the market Debt-to-Equity ratio. Untabulated 

statistics also reveal that the correlation coefficient between the market Debt-to-Equity ratio 
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and EV r



Merton  is 0.568. These empirical observations square with the notion that market 

default risk as captured by the MDLI measure is a reasonable proxy of market leverage.
7
   

[Table 2, here] 

[Figures 1 & 2, here] 

Moreover, in the spirit of Denis and Denis (1995) and Vassalou and Xing (2004), 

among others, we expect a negative relation between market default risk and stock prices 

when EV r



Merton  reflects market’s expectations regarding the future growth/state of the 

economy. Empirical support for this expectation is presented in Figure 3, which plots the 

daily values of EV r



Merton , FV r



Merton , and GV r



Merton  against the S&P 500 Index. For instance, it is 

interesting enough to observe that in March 2003 the value of EV r



Merton  is above 10% while 

after July 2003 its value drops significantly below 2%. Evidently, the rapid decline in the 

value of the MDLI measure is followed by a long-lasting bullish period for the S&P 500 

Index. Moreover, it is also intriguing to observe that while from August 2007 to December 

2007 the S&P 500 Index presented a moderate decline in value of less than 10%, EV r



Merton  

was increasing at an exponential rate, rising from 0.05% early in August 2007 to about 2% by 

the end of 2007. The astonishing increase in the value of market default risk during this 

period may have been an early sign in anticipation of the financial crisis that would hit the 

U.S. capital market a couple of months later. 

[Figure 3, here] 

As can be seen from Table 2 (Panel A) and Figure 3, all alternative MDLI measures 

are significantly positively related to one another, with correlations well above 0.763. 

                                                 
7
 We also proxy for the S&P 500 Debt-to-Equity ratio by computing the aggregate book‐value of debt 

to market‐value of equity ratio as defined in Figlewski and Wang (2000). To compute the Debt-to-

Equity ratio in this case we follow similar treatments as in Figlewski and Wang (2000) using quarterly 

balance sheet information from Compustat and daily stock prices from CRSP. In particular, book value 

of debt is defined as debt in current liabilities (Compustat data item 45) plus long-term debt (Compustat 

data item 51) aggregated for the 500 firms in the S&P Index divided by the daily market capitalization 

of the index. The correlation coefficient between the Merton and the Figlewski and Wang proxy for 

market Debt-to-Equity ratio is 0.823. Moreover, the correlation between the Figlewski and Wang 

market Debt-to-Equity ratio and EV r




Merton
 is 0.786. 
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Overall, the alternative measures seem to subsume similar levels of information regarding the 

market default risk time evolution. For this reason, the subsequent analysis focuses only on 

the use of EV r



Merton . Bharath and Shumway (2008) report that this measure preserves the 

highest out-of-sample accuracy among the different versions of credit risk estimators they 

consider. Nevertheless, the results reported subsequently are qualitatively the same, both in 

reported directional signs and statistical significance, regardless of whether GV r




Merton  or 

FV r



Merton  is used, instead (detailed results are not reported here for brevity but are available 

upon request). 

 

4.2 Option Sample and Risk-Neutral Moments 

Table 3 reports summary statistics for the options dataset. Moneyness classes are created 

using options’ delta values defined similarly as in Bollen and Whaley (2004) (information for 

the construction of the moneyness classes is tabulated in Table 3). Implied volatilities in 

general decrease monotonically across the delta categories as the exercise price rises relative 

to the index level, with the only exception being deep-in-the-money puts whose implied 

volatility is comparable to that of the deep-out-of-the-money puts. Therefore, while for call 

options a volatility smirk pattern is apparent, put options’ implied volatilities are more likely 

to exhibit a smile pattern. Due to the possible existence of limits to arbitrage, market makers’ 

supply curves are upward sloping and therefore, they demand high premia for taking short 

positions in deep-in-the-money puts during periods of negative market momentum. In this 

respect, limits to arbitrage can allow a volatility smile to emerge in the cross-section of put 

options. Finally, from Table 3 we observe option trading volumes to present patterns similar 

to those reported in Bollen and Whaley (2004). Specifically, at- and out-the-money options 

have higher levels of trading volume and lower bid–ask spreads than for in-the-money cases.  

[Table 3, here] 

Table 4 tabulates summary statistics for the 30-, 60- and 91-day risk-neutral moments 

for 2,514 trading days covering the period 1998–2007 (Panel A). Since some of our key 
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determinants are utilizing index and options trading volume, following the recommendations 

in the study of Lo and Wang (2000), the sample period is further split into two five-year   

(sub-)periods. Lo and Wang (2000) try different methods for detrending trading volume and 

conclude that they either fail to remove serial correlation or they destroy the time series 

properties of the raw data. They assert that short measurement periods should be considered 

when analyzing trading volume due to the nonstationarity of the variable. Based on this 

empirical observation, Bollen and Whaley (2004) carry out their study using six years of data. 

Moreover, splitting the data in two periods allows us to model the possibility of changing 

relations between the dependent and independent variables across the two periods. Therefore, 

Table 4 reports descriptive statistics for the two periods, with the first covering 1,256 days 

from 1998 to 2002 (Panel B) and the second covering 1,258 days from 2003 to 2007 (Panel 

C). Finally, Panel D reports the difference in the mean values between the two periods.  

As shown in the table, 30-day risk-neutral volatility, 
30MFIV , varies from 0.092 to 

0.460 with a mean value of 0.199. The respective minimum, maximum and mean values for 

60MFIV  (
91MFIV ) are 0.104 (0.111), 0.434 (0.431) and 0.206 (0.207). Risk-neutral 

skewness, 
30SKEW , is negative throughout the full period with a sample minimum 

(maximum) value of -2.466 (-0.407), whereas there is consistently excess kurtosis, with the 

lowest value of 
30KURT  equal to 3.238. The respective minimum (maximum) values for 

60SKEW  and 
91SKEW  are -2.493 (-0.598) and -2.341 (-0.424). The respective minimum 

(maximum) values for 
60KURT  and 

91KURT  are 3.101 (11.546) and 2.881 (9.618). There is a 

notable difference in the risk-neutral volatility between the two periods. Moreover, the second 

period exhibits on average a more negative risk-neutral skewness and higher excess kurtosis. 

The above evidence indicates that in both periods the implied distribution of the S&P 500 

index returns do not conform to the Black-Scholes theoretical assumption of asset returns 

normality. The negative risk-neutral skewness in both periods is indicative of persistent 

negatively sloped (i.e., steeper) implied volatility curves, while the excess risk-neutral 

kurtosis is indicative of pronounced convexity; overall, the reported evidence of both periods 
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is consistent with prior research (e.g., Bakshi et al. (1997, 2003); Dennis and Mayhew (2002); 

Han (2008); Andreou et al. (2014)) that advocate the existence of an implied volatility 

smile/smirk anomaly in the equity and index options. Nevertheless, 30-, 60- and 91-day risk-

neutral skewness and kurtosis are more pronounced in the second period (i.e., skewness is 

more negative and kurtosis is higher) which coincides with evidence in Bollen and Whaley 

(2004) according to which the slope of the option implied volatility smile could change 

dramatically from period to period (see also, Andreou et al. (2010)). It is also noteworthy that 

all differences in the mean values of the risk-neutral moments are statistically significant 

across the two periods. In essence, the second period reveals a more noticeable index option 

volatility smile anomaly which creates greater challenge in identifying the key determinants 

that drive the daily evolution of risk-neutral distributions. Despite, following prior literature 

(e.g., Toft and Prucyk (1997), Geske and Zhou (2012)) that examines the relation between 

leverage and (firm or index) risk-neutral skewness, we would expect the steepness of the 

smile to strongly depend on the level of leverage; in this vein, the relation between the MDLI 

measure and the S&P 500 index risk-neutral moments is expected to be more prevalent in the 

second period. As we show later in our regression investigation, in the second period of our 

analysis, we find stronger evidence that the market default risk is a primary economic 

determinant of the S&P 500 Index option-implied risk-neutral distributions. 

Subsequent analysis is carried out only for the 60- and 91-day risk-neutral moments. 

The 30-day results are very similar to those for 60-day and 91-day risk-neutral moments and 

therefore are omitted for brevity. All omitted results are available, however, upon request. 

[Table 4, here] 

 

4.3 Default Risk and Variation in Option-Related Variables 

We start our analysis by investigating whether groups of days with different market 

default risk levels convey significantly different information with respect to certain option-

related variables. As explained below, to perform this analysis we form three groups of data 
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by pooling together days where EV r



Merton  exhibits low, medium and high values. It is true, 

however, that EV r



Merton  is highly correlated with the: i) contemporaneous S&P 500 Index 

level, tSP500  (pairwise correlation equal to -0.409), ii) contemporaneous 30-day historical 

volatility, 
Hist

t,30  (pairwise correlation equal to 0.698), and iii) one-day lagged Chicago Board 

Options Exchange’s (CBOE) VIX level, 1VIX t  (pairwise correlation equal to 0.705). 

Therefore, to isolate the net information content of the MDLI measure, we remove the effect 

of tSP500 , 
Hist

t,30 , and 1VIX t  from EV r

t






Merton,  using the following set of regressions 

estimated over the whole period: 

167.0,SP5000001.0083.0 2SP500

,Merton,  


Rtt

r

t
EV  ,                           (2) 

 487.0,206.0013.0 2(Hist)

,,30Merton,  


Rt

Hist

t

rμ

t
EV  ,                           (3) 

497.0,VIX223.0024.0 2(VIX)

,1Merton,  


Rtt

r

t
EV   ,                                 (4) 

568.0,VIX096.0116.0SP5000001.0012.0 2all

,1,30Merton,  


Rtt-

Hist

tt

r

t
EV  .            (5) 

By construction, residuals of the above regressions are orthogonal to the variable(s) in the 

right-hand side of each equation, thus allowing us to assess the net information content of 

EV r



Merton  as a proxy of market default risk. By adopting this regression approach, we limit the 

possibility to observe any spurious relations between the orthogonalized EV r



Merton  measures 

and options-related variables that could otherwise have emerged with the raw EV r



Merton  

measure. Despite the above orthogonalization, untabulated statistics reveal that regression 

residuals resulting from Eqs. (2)-(5) are still strongly correlated with EV r



Merton  (with Pearson’s 

correlations to exceed 0.67 and Spearman correlations to exceed 0.53). This indicates that 

MDLI as proxied by EV r



Merton  captures additional information, which is over and above of 

that captured by other major economic variables such the ones included in Eqs. (2)-(5).    
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 Table 5 reports day-groups of certain variables by allocating the orthogonalized 

EV r



Merton  values (namely, 

SP500

,t  in Panel A,  
(hist)

,

 t  in Panel B, 
VIX

,t  in Panel C and 
all

,t  in 

Panel D) in three asymmetric groups: The LOW group includes all orthogonalized EV r



Merton  

values which are less than the 50th percentile of the whole period, the MEDIUM group 

includes values between the 50th and 80th percentiles, while the HIGH group includes values 

greater than the 80th percentile.
8
 Regarding the behavior of the three orthogonalized EV r



Merton  

groups, it is intriguing enough to observe from Table 5 that there are statistically significant 

differences between the LOW and HIGH groups. For instance, from Panel A the mean value 

of the LOW group for 
SP500

,t  is -1.6%, while that for the HIGH group is equal to 3.2%  

with the difference equal to 4.8% also statistically significant at the 1% level (all t-statistics 

for this table are computed using White’s (1980) heteroskedasticity robust standard errors). 

Similar patterns are observed for the rest market default risk residuals exhibited in Panels B 

to D.   

Table 5 also reports the corresponding LOW, MEDIUM and HIGH day-group mean 

values for the: i) 30-day-ahead realized volatility (
Ahead
30 ), ii) implied volatility of at-the-

money calls belonging in delta moneyness category 3 (
Calls

3 ), iii) implied volatility of at-

the-money puts belonging in delta moneyness category 3 (
Puts

3 ), and iv) 60- and 91-day 

risk-neutral volatilities, skewness, and kurtosis. Results show that there is a smooth 

monotonic pattern between the LOW and HIGH groups for all options-related variables. For 

instance, as expected, the higher the level of the orthogonalized EV r



Merton , the higher the 

values for 
Ahead
30 , 

Calls
3 , and 

Puts
3 . In addition, there is a strong positive (negative) 

                                                 
8
 Similar results prevail when the 70th percentile is used as the breaking point between the MEDIUM 

and HIGH portfolios. We choose to break down the groups in such an asymmetric manner because 

financial distress is, by definition, a tail event measure. In the same vein, Bharath and Shumway (2008) 

use asymmetric day-groups to investigate the out-of-sample default risk accuracy in the bankruptcy 

context, while Campbell et al. (2008) investigate the relation between risk and the mean returns of 

distressed stocks using asymmetric groups that pay greater attention to the tails of the default risk 

distribution.    
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relation between the orthogonalized EV r



Merton and risk-neutral skewness (kurtosis). Overall, 

using evidence in Table 5, we can attest that EV r




Merton  has a significant role to play on how 

option-related variables are determined, especially on how investors’ trading behavior 

determines the daily shape of the S&P 500 Index risk-neutral distributions.
9
 

[Table 5, here] 

 

4.4 Determinants of the S&P 500 Index Option-Implied Risk-Neutral Distributions 

We rely on regression analysis to investigate the relation between the S&P 500 Index 

option-implied risk-neutral distributions, the MDLI as proxied by EV r



Merton , and a set of other 

economic variables. The analysis includes variables that are relevant to the characteristics of 

the underlying asset, variables that may predict the future stock market state/conditions and 

variables that capture characteristics of the option market.  

Based on prior empirical evidence, the following economic determinants are 

considered. In the spirit of Peña et al. (1999), a dummy variable for Mondays, tMON , is 

used to check whether risk-neutral moments differ significantly at the beginning of the week 

(see also, Bakshi et al. (2003)). As in Han (2008), the one-day lagged value of the CBOE 

VIX index, 1VIX t , is used as a proxy for the uncertainty in the underlying market. 

Furthermore, the one-day-lagged log of the S&P 500 dollar trading volume, 1IdxVol t , is 

used as a measure for the level of activity due to the information flow in the underlying 

market. 

We use two variables that can potentially predict the future state of the underlying 

market. One variable is the log of the S&P 500 Index short-run momentum, tIdxMom , given 

as the ratio of its 60-day moving average divided by its current level: 

                                                 
9
 Qualitatively similar results are obtained when using the raw measure of EV r




Merton
 instead of the 

residuals from Eqs. (2)-(5). Similar results also emerge when using either GV r



Merton

 or FV r



Merton

 instead 

of EV r




Merton
 (either in raw levels or in residuals taken from Eqs. (2)-(5)). All these results are available 

upon request. 
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 ,                             (6) 

where tSP500  is the value of the index at the end of trading day t. The other variable is a 

measure of the log relative T-bill rate level with respect to its 60-day moving average, 

tTbMom , defined as 
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t
t

r
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,                                        (7) 

where 
3m

tr  is the three-month Treasury constant maturity rate at the end of trading day t. 

Chen (1991) indicates the importance of such macroeconomic variables in predicting the 

future economic activity of the market (see also, Chan et al. (1998); Han (2008)). 

We also include three variables that can potentially capture the characteristics of the 

option market. The first variable refers to the daily mean percentage bid–ask spread, 
tA-B , 

for all options transacted during the day (we define 
tA-B  to become more negative as the 

bid–ask spread widens). Such a variable can be a proxy measure of trading activity and of 

transaction costs faced by agents participating in the option market (George and Longstaff 

(1993)). The second variable is the one-day-lagged log of the number of call and put option 

contracts traded throughout the day, 
1OptVol t . This variable is used as a measure of 

investors’ heterogeneity of beliefs that triggers trading activity in the option market (Buraschi 

and Jiltsov (2006), Wong et al., 2011). The third measure represents the net buying pressure 

variable, 
tNBP , following Bollen and Whaley (2004). 

tNBP  is defined to be the ratio of the 

open interest of out-of-the-money puts (options in the delta range (-0.375,-0.125)) to the open 

interest of near and at-the-money options (call options in the delta range (0.375,0.625) and put 

options in the delta range (-0.375,-0.125)). This variable captures the net buying pressure for 

out-of-the-money puts which mainly reflects institutional investors’ trading activity upon their 
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hedging needs. Such a directional buying pressure may affect the shape of the risk-neutral 

distribution due to the presence of limits to arbitrage (Bollen and Whaley (2004)). 

Additionally, we consider the Baker and Wurgler (2006) investor sentiment index, 

tBWsent , as previous literature suggests that market sentiment can have a significant effect 

on index options risk-neutral skewness through its impact on the pricing kernel. In particular, 

Han (2008) finds that changes in investor sentiment help explain time variation in the slope of 

index option smile and that the impact of investor sentiment on risk-neutral skewness is 

higher in the presence of high limits to arbitrage.
10

  

The contemporaneous S&P 500 Index return, tRET , is the next variable we include 

in the analysis. Bollen and Whaley (2004) suggest that including tRET  in such a regression 

analysis helps control for the leverage effect. This is true, since as reported in Table 2 the 

correlation of tRET  with EV r
t





,Merton  is -0.594.  

 Table 6 reports correlation coefficients between the 60-day risk-neutral moments and 

rest economic determinants which subsequently are being used as independent variables in 

the time series regression analysis. To conserve space and bring into focus the key results we 

report correlation coefficients for the full period 1998-2007. Untabulated results reveal 

similar correlation coefficients for the two periods 1998-2002 and 2003-2007. Correlations of 

variables displayed in Table 6 with the 91-day risk-neutral moments are again similar in 

magnitudes with the ones reported for the 60-day ones. The correlations reported are 

consistent with the inferences drawn from Table 5 on the relation of EV r




Merton  with risk-neutral 

moments. The level of the MDLI is strongly positively (negatively) correlated with risk-

neutral volatility and skewness (kurtosis). In particular, the Pearson’s (Spearman’s) 

correlation of EV r




Merton  with 60MFIV  is 0.701 (0.711), with 60SKEW  is 0.704 (0.785) and 

                                                 
10

 Since the Baker and Wurgler sentiment index data come to an annual or monthly frequency, we 

choose the monthly data and convert them to daily by matching each day of a month with the 

respective monthly value. We use sentiment changes in the regression analysis because the original 

variable in levels appears to be nonstationary during our period. 
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with 60KURT  is -0.687 (-0.810). In addition, correlations also reveal interesting relations 

between the rest economic determinants and the risk-neutral moments (discussed in more 

detail in the multivariate time series regression analysis that follows). Finally, in the bottom 

of Table 6 we report the variance inflation factor (VIF) to investigate the existence of co-

linearity between the economic determinants that are being used as independent variables in 

the regression analysis. As can been seen from the reported figures, all VIF values are well 

below the generally accepted cut-off value of 10, therefore it is less likely that our model 

specifications suffer from the co-linearity problem.
11

     

[Table 6, here] 

 To investigate the relation under a multivariate regression analysis, we estimate the 

following time series model: 

,*RET  RET

NBPBWsentOptVol A-BTbMom
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 (8) 

where the dependent variable ty  is one of the six risk-neutral moments, 

],,,,,[ 919191606060 KURTSKEWMFIVKURTSKEWMFIVy . An augmented Dickey–

Fuller (ADF) test rejects the non-stationarity for all of the S&P 500 risk-neutral moments (a 

Phillips–Perron test provides similar results). In the regression model we include two lag 

values of the risk-neutral moments as an effective way to tackle positive serial correlation that 

can potentially aggravate the standard errors of the t-statistics and possible omitted variable 

misspecification issues. This also allows us to assess how much weight traders put on lagged 

moments in determining the current value providing information for the persistency of the 

risk-neutral distributions (Peña et al. (1999); Dennis and Meyhew (2002); Han (2008); Taylor 

et al. (2009)). An ADF test reveals that TbMom has a unit root, so the first differences of 

this variable, TbMom , are used in the regression analysis. Moreover, instead of the index 

                                                 
11

 To guard against erroneous inferences on the co-linearity problem, all our regression analysis is 

repeated by excluding independent variables which exhibit high correlations to reach similar 

conclusions as the ones presented in Table 8 which includes the full set of economics determinants 

employed in this study. 
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return, tRET , we use tRET , which is taken to be the residual from the regression 

(estimated separately for each period): 

t

r

tt
EVbb RET*RET ,Merton10 



.                                   (9) 

This decomposition helps to remove the leverage effect from the contemporaneous 

index return which is predominantly captured by the MDLI measure. Finally, we include 

three variables that relate to market default risk. An ADF test shows that EV r



Merton  has a unit 

root (a Phillips–Perron test provides similar results); hence we use EV r



Merton  in the regression 

analysis. We also use the absolute value of EV r



Merton  to gauge its asymmetric effect on the 

shape of the implied volatility curves. Finally, we also use an interaction term of EV r



Merton

with tRET . 

Table 7 reports a reduced version of the regression model in Eq. (8) where we include 

the two lag values of risk-neutral moments along with EV r



Merton  to investigate our main 

hypothesis of whether market default risk is affecting the daily risk-neutral distributions of 

the S&P 500 Index options. First, we note that the explanatory power of the regression 

models is significantly high, with an overall average value of R
2 

above 88%. Thus, the 

regression analysis is an adequate tool for explaining the time variation of risk-neutral 

moments. Second, as shown from the reported coefficients and the associated t-statistics, 

 ,Merton
EV r

t





appears to be a key determinant of the daily option-implied risk-neutral 

distributions. Specifically,  ,Merton
EV r

t





 is found to be strongly positively related to risk-

neutral volatility in both periods, with the relations to be statically significant at 1% or better. 

Likewise, consistent with the results reported in the correlation analysis in Table 6, the MDLI 

measure is also strongly positively (negatively) related to risk-neutral skewness (kurtosis). 

Finally, findings show that the current shape of the implied volatility curve is significantly 

affected by its shape during the previous two days (see also, Han, 2008). The previous day’s 
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risk-neutral coefficient seems to be more important though, since it carries a larger loading 

compared with the two-days lagged one (and it is always significant at 1% or better). 

[Table 7, here] 

Table 8 tabulates the results after we estimate the full version of the regression model 

in Eq. (8). This analysis allows us to investigate whether the relations of MDLI with the risk-

neutral distributions remain significant after including additional economic variables in the 

regression analysis. We can make several important observations out of Table 8, some of 

which concern novel empirical evidence that sheds light on what drives the daily risk-neutral 

distributions of the S&P 500 Index options.
12

 

[Table 8, here] 

The Monday effect, tMON , appears to be a determinant of the risk-neutral asset 

return moments, with negative (positive) and statistically significant coefficients for risk-

neutral volatility (skewness), especially in the second period. This evidence suggests a 

tendency for higher levels of volatility and more negative risk-neutral skewness on Fridays, 

most probably in anticipation of bad news that can hit the market during the weekend. 

The variables tIdxMom  and 1VIX t , which capture the relevant characteristics of 

the underlying market, play a very important role, since both are related to the risk-neutral 

moments (especially during the first period where the market is trending downward). In 

particular, index risk-neutral volatility (skewness) becomes higher (less negative) when VIX 

is higher. Bollen and Whaley (2004) conjecture that the movement and shape of the S&P 500 

Index implied volatility curves depend highly upon whether the net public demand for 

options is to buy or to sell. From the results here, it is highly likely that investors use 

tIdxMom  and 1VIX t  to form expectations for the future states of the underlying asset, and, 

eventually, these variables affect the net public demand for options. 

As in Peña et al. (1999), we find that the measure of the log relative T-bill rate, 

tTbMom , is an economic determinant of the index options, especially with respect to risk-

                                                 
12

 Results when estimating the regression models for the full period 1998-2007 remain the same. 
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neutral skewness. In particular, a lower log relative T-bill rate is associated with less negative 

skewness. This evidence coincides with that of Chen (1991), who reports that lower T-bill 

rates reflect lower expected inflation, which in turn reflects higher future economic growth. 

Inasmuch, the mean percentage bid–ask spread ( tA-B ) also affects to some extent risk-

neutral skewness and kurtosis in the first period; in particular, when the mean bid–ask spread 

becomes more negative as a result of a wider spread, risk-neutral skewness (kurtosis) 

becomes more negative (positive).
13

 In the same vein, Peña et al. (1999) report that the degree 

of curvature of the Spanish option market implied volatility curves is positively related to the 

bid–ask spread. 

The Baker and Wurgler sentiment, tBWsent , does not appear to have a significant 

effect on the risk-neutral moments of the S&P 500 Index. This result is in stark contrast with 

Han (2008) who finds a significant positive relationship for the period from January 1988 to 

June 1997. The absence of relation between the investor sentiment and the risk-neutral 

moments for the more recent data periods (especially with respect to the risk-neutral 

skewness) is probably due to the fact that limits to arbitrage in the S&P 500 Index options 

market may have decreased over time, thus eliminating any significant relationship between 

sentiment and risk-neutral moments which has previously been reported by Han (2008).  

The net buying pressure measure, tNBP , is found to have a strong impact on the 

daily shapes of the S&P 500 option-implied risk-neutral distributions across both periods. 

Consistent with the notion that a high demand for out-of-the-money puts implies that a large 

number of investors anticipate a downturn in the market, tNBP  is negatively (positively) 

                                                 
13

 We acknowledge that tA-B  carries the opposite signs with respect to the risk-neutral moments in 

the second period, which is contrary to what we expect to observe (although we do not observe any 

statistical significance on the regression coefficients). We checked whether this is due to co-linearity, 

but the highest correlation of tA-B  with the rest of the regressors is less than 11% (in absolute terms) 

based on the sub-sample correlations. Since the two periods differ in terms of market conditions, one 

possibility is that the effect of tA-B  is conditional on the direction of the market. 
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related to the risk-neutral skewness (risk-neutral volatility and kurtosis).
14

 Bollen and Whaley 

(2004) find that changes in the level of an option’s implied volatility are positively related to 

time variation in demand for the option. In the same vein, Han (2008) finds a significantly 

negative impact on S&P 500 Index risk-neutral skewness. 

Regarding the role of MDLI, even after including a large set of economic variables 

 ,Merton
EV r

t





 continues to affect in a statistically significant fashion the daily risk-neutral 

distributions. In the same line of reasoning with the leverage effect hypothesis (Figlewski and 

Wang, 2000),  ,Merton
EV r

t





 is found to be positively related to risk-neutral volatility ( 60MFIV  

and 91MFIV ) in both periods. In addition, as in Figlewski and Wang (2000), this relation 

appears to be asymmetric, since the coefficient of  ,Merton
EV r

t





is always positive. 

Under the traditional option pricing models, such as the Black–Scholes, there should 

be no relation between the rest of the risk-neutral moments and the MDLI measure. However, 

the findings in Table 8 challenge this view, since, in almost all cases considered,  ,Merton
EV r

t





 

is positively (negatively) related to risk-neutral skewness (kurtosis). Findings suggests that on 

high-MDLI days, the market assigns higher levels of risk-neutral skewness (i.e., higher 

probability of large positive returns) and lower levels of risk-neutral kurtosis (i.e., lighter 

tails). This is a key result and coincides with firm level findings documented by prior 

research. In particularly, Dennis and Mayhew (2002) document that firms with more leverage 

tend to have less negative skews. Taylor et al. (2009) report that leverage is positively and 

strongly related to risk-neutral skewness implied by the prices of individual stock options. All 

in all, our results lend further credence to the notion that relations that have been observed at 

the firm level extend likewise to the economy level. 

In the context of asset pricing studies, prior empirical literature has established a 

negative relation between market default spreads and future economic growth (Chen, 1991; 

                                                 
14

 We obtain similar results if we alternatively define the NBP variable to be the open interest ratio of 

out-of-the-money puts to calls (puts in the delta range (-0.375,-0.125) and calls in the delta range 

(0.125,0.375)). 
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Chan et al., 1998). Moreover, under the rational representative agent framework, someone 

should predict that days with high MDLI values should associate with more negative risk-

neutral skewness. Nevertheless, within an option pricing context, our results reveal a positive 

(negative) relation between the MDLI and risk-neutral skewness (kurtosis). The observed 

relations may be the result of behavioral bias (i.e., the gambler’s fallacy) spurred from option 

market participants. In the same vein, Han (2008) finds that changes in investor sentiment 

help explain the time variation in the risk-neutral skewness of the S&P 500 Index options, an 

empirical fact that is at odds with rational perfect–market–based option pricing models.  

Finally, tRET is also found to be a primary economic determinant of risk-neutral 

distributions. Results in Table 8 show that tRET , which is free of the leverage effect, still 

has a negative sign in relation to the level of the options’ implied volatility as captured by 

60MFIV  and 90MFIV . In addition, we observe a strong negative (positive) relation of tRET  

to the options’ risk-neutral skewness (kurtosis). This observation brings a new perspective to 

the role of returns. In particular, it reveals a tacit aspect of the contemporaneous market 

returns, which most probably relates to the perception of the market agents regarding the 

short-term risk (i.e., random jumps) that underlies the S&P 500 Index. 

The following treatments are carried out for robustness purposes.
15

 First, our 

empirical inferences are qualitatively the same if the naïve estimator of Bharath and 

Shumway (2008) is employed in place of EV r



Merton .

16
 Second, since the S&P 500 is a value-

weighted equity index, we reconstruct each of the three MDLI computed by Eq. (1) using a 

value-weighted scheme, where each firm-specific default risk computed for the firm i on day 

t (i.e., ),(Merton ti
qV   with },,{ GFE rrrq ) is weighted by the market-capitalization of each 

firm (market-capitalization is computed by taking the number of outstanding shares of each 

                                                 
15

 All robustness analysis results are available upon request. 
16

 Like in Bharath and Shumway (2008), we find that the distribution of EV r




Merton  is extremely similar 

to the one of naïve alternative 
EV r




naive  and that both default risk measures deliver similar estimates of 

asset volatility. Moreover, Bharath and Shumway (2008) report a correlation value of about 0.98 

between their EV r




Merton  and 
EV r




naive , whereas this figure is about to 0.99 in our sample. 
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firm and multiplying that number by the firm's daily share price, whereas the daily market 

weight is calculated by dividing the market capitalization of a firm on the index by the total 

market capitalization of all non-financial firms that are included in the S&P 500 portfolio). 

We re-estimate all regression model specifications as in Table 8 using the value-weighted 

version of EV r



Merton  to reach qualitatively similar results. We also reach similar results if, 

instead, we re-estimate these regression models using the value-weighted versions of either 

FV r




Merton  or GV r




Merton . Third, the results remain unchanged if the 30-day constant maturity risk-

neutral moments are used instead. Fourth, Amin et al. (2004) document that option prices are 

affected by past stock returns. Although we have already controlled for market momentum 

via tIdxMom , all regression models of Table 8 are re-estimated by including one-, two-, and 

three-lag values of the daily index return, with no significant changes. Fifth, the same results 

are obtained when using a 30- or 60-day historical average volatility instead of VIX. Sixth, to 

preclude the possibility that the contemporaneous value of EV r




Merton  appears to be a strong 

economic determinant because it shares information with the S&P 500 Index options, we re-

run all regression models using the one-day-lagged value of MDLI, EV r
t





1,Merton . Again, the 

results are similar to those reported in Table 8. Finally, instead of using the model-free risk-

neutral moments based on the methodology of Bakshi et al. (2003), we investigate whether 

the above relations are robust using the coefficients obtained from a regression-based 

structural volatility model similar to those used by Dumas et al. (1998).
17

 Again, the results 

are similar, since we find that the MDLI is positively (negatively) related to the level and 

slope (convexity) of the implied volatility curve (qualitatively similar results also hold for the 

rest of the economic determinants). 

                                                 
17

 We model index-implied volatilities by fitting the Black–Scholes (1973) option pricing model to 

observed option prices each day t, whereas the implied volatility curve is modeled as follows: 

)])/(ln[]/ln[,01.0max( 2
210 KSaKSaa   

Following Andreou et al. (2014), the volatility function is estimated via nonlinear least squares by 

using the daily joint set of out-of-the-money calls and out-of-the-money puts. In the estimation we 

include options with maturities of less than 60 days. Zhang and Xiang (2008) derive analytical 

formulas that relate the level ( 0a ), slope ( 1a ), and convexity ( 2a ) of the volatility function to the 

standard deviation, skewness, and kurtosis, respectively, of the asset return risk-neutral distribution.  
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5. Conclusions 

This study provides novel empirical evidence regarding the impact of market default 

risk on the daily evolution of the S&P 500 Index option-implied risk-neutral distributions. 

The analysis shows that market default risk has a dual role to play, since it can capture both 

the market leverage effect as well as the market’s perceptions about future economic 

prospects. The analysis also reveals that index option risk-neutral distributions are 

simultaneously affected by other economic determinants that are relevant to the 

characteristics of the underlying asset (i.e., market uncertainty and market direction), 

characteristics of the option market (i.e., seasonality, option activity, and transaction costs), as 

well as the recent behavior (persistence) of the implied volatility curves.  

Previous empirical evidence has shown that certain modern parametric option pricing 

models have limited forecasting capabilities and exhibit fairly poor hedging performance 

(e.g., Bakshi et al. (1997); Dumas et al. (1998); Pan (2002); Andreou et al. (2014)). Our 

results can explain why theoretical predictions of such option pricing models are not 

consistent with what is observed in practice regarding the S&P 500 Index implied volatility 

curves. In that respect, the findings of this study have accentuated the importance of specific 

economic determinants that market participants can utilize to achieve more precise option 

pricing and improve risk management practices. 

It is also noteworthy that, since the flurry of the financial crisis, financial press has 

stressed the importance of studying unconventional risk indicators that may help investors to 

better apprehend the forces that drive financial markets and allow them to follow more 

prudent investment practices when such (disaster) indicators suggest another crisis might 

happen (Shimko (2009)). In that vein, since the market default risk index is found to affect 

the higher-order risk-neutral moments of index options, future research should consider it a 

strong candidate for forecasting (jump or disaster) risk. 
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Appendices 

A. Merton DD Model and the Probability-to-Default 

 The Merton distance-to-default (DD) model estimates the market value of the debt by 

utilizing the Merton (1974) bond pricing model. This model posits that the dynamics of a 

firm’s equity value can be described by a geometric Brownian motion 

EdWσEdtdE EE   , (A.1) 

where E  is the value of the firm’s equity, E  is the continuously compounded expected 

return on E  (i.e., the instantaneous drift), E  is the instantaneous volatility of the firm’s 

equity values, and dW  is a standard Gauss–Wiener process. Merton (1974) shows that the 

dynamics of the total value of a firm can also be described by a geometric Brownian motion: 

VdWσVdtdV VV   , (A.2) 

where V  is the total value of the firm’s assets, V  is the continuously compounded expected 

return on V , and V  is the instantaneous volatility of firm value. 

 Under the classic Merton (1974) model, the market value of equity, E , is viewed as 

a call option on the total value of the assets, V  (i.e., the underlying asset), with exercise price 

equal to the face value of the debt, F , and time to maturity T . Therefore, the market value of 

equity can be described by the Black–Scholes (1973) formula for call options: 

 )()( TdFedVE V

rT  
,                              (A.3) 

where 

T

TrFV
d

V

VF



 )5.0()/(ln 2
 ,                                     (A.4) 

with Fr  to be the instantaneous risk-free rate and (.)  to be the cumulative standard normal 

distribution. Since the volatility of the firm’s total assets is not readily available from the 

market, the model explores the fact that ),( TVfE   and uses Itô’s lemma to derive that the 

volatility of the equity returns is 
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VE d
E

V
 )(








 , (A.5) 

with )(/ dVE   to denote the delta hedge parameter computed by Eq. (A.3), where d  is 

given by Eq. (A.4). Equation (A.5) reflects the fact that the volatility of an option (i.e., the 

equity in this case) is always greater than or equal to the volatility of the underlying asset 

(i.e., the market value of total assets). Moreover, it can offer an explanation for the stylized 

negative correlation between the index price and its volatility; that is, when the equity index 

level drops, the equity index volatility rises, and vice versa (coined as the leverage effect). 

 From an implementation perspective, E , E , and Fr  can be observed from the 

financial markets, while F  and T  can be observed from the financial statements of the firm. 

On the contrary, V  and V  should be inferred numerically using the Merton DD model, 

since neither is directly observable. Once numerical values are obtained for V  and V , the 

DD value at time instance t is: 

T

TFV
DD

V

VV
t



 )5.0()/ln( 2
 . (A.6) 

The resulting probability-to-default value is computed using the normal cumulative 

distribution: 

)(Merton tDD . (A.7) 

Eq. (A.7) demonstrates that the probability a firm will default by time T is the probability that 

shareholders will not exercise their call option to buy the assets of the company for F at time 

T. The ratio FV / can be conceived as measure of market-value of assets to book-value of 

debt, which in essence is an inverse measure of leverage (a more appropriate definition of 

leverage would be: 
V

Fe
TrF

) . Under the mild condition that the volatility of the asset value     

( V ) and the expected return on the firm’s total assets ( V ) remain constant, then the 

probability-to-default depends only on the inverse leverage value; in this respect, the relation 

behind Eq. (A.7) implies that higher leverage would result into higher probability-to-default 



36 

 

values. In this respect, the Merton model implies a deterministic relation between the 

distance-to-default as captured by DD in Eq. (A.6) and the probability-to-default as computed 

in Eq. (A.7).  

 Figure A.1 shown below illustrates the theoretical relation between leverage and 

Merton firm-specific probability-to-default as defined in Eq. (A.7); for purpose of illustration, 

Debt-to-Equity ranges from 20% to 100%, expected return on the firm’s total assets is set to 

5%, volatility of total assets is set to three different values (30%, 40% and 50%) and time 

forecasting horizon is set to one year. As expected, default risk is an increasing function of 

leverage as captured by the Debt-to-Equity ratio. In addition, empirical support of the 

abovementioned relation is illustrated in Figure 2 which depicts that market default risk as 

captured by our MDLI measure moves in tandem with market leverage as captured by the 

market Debt-to-Equity ratio.  
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Figure A.1: Relation between Debt-to-Equity and Merton probability-to-default   
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B. Expected Returns on the Firm’s Assets Using Hedge Parameters 

Given the fact that ),( TVfE  , we can use Ito’s Lemma to derive another expression for the 

dynamics of the equity: 

dW
V

E
Vdt

t

E

V

E
V

V

E
VdE VVV

































 

2

2
225.0 . (B.1) 

By comparing the drift terms of Eqs. (A.1) and (B.1), we have that 

t

E

V

E
V

V

E
VE VVE














 

2

2
225.0 ,         

and by rearranging terms,  

 
V

E
V

t

E

V

E
VEr VEVG













 /)5.0(

2

2
22 , (B.2)  

where the hedge parameters are given as follows: 

 )(:delta d
V

E





, (B.3)        

TV

dN

V

E

V

)('
:gamma

2

2





, (B.4)        

)(
2

)('
:theta TdrFe

T

dV

t

E
V

rTV 








 
, (B.5)        

with )(' d  to denote the density function for the standard normal distribution. 
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C. Risk-Neutral Moments: The Bakshi, Kapadia and Madan (2003) Method 

 Following closely Bakshi et al. (2003), for a given trading day t, let 

)]([ln)]([ln),( tStStR    to be the τ-period log-price relative asset return. Let 

}),({),( 2*   tReEtV r
t

 , }),({),( 3*   tReEtW r
t

 , and }),({),( 4*   tReEtX r
t

  to 

denote the fair value of the payoffs of the variance contract, the cubic contract and the quartic 

contracts respectively. The price for the variance contract is given by: 
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The price for the cubic contract is given by: 
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The price for the quartic contracts is given by: 
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Finally, the risk-neutral moments over the period [t, t+τ] are calculated as follows. The τ-

period risk-neutral volatility, ),( tMFIV , is given by:    

222* ),(),(),(}),({),(  tetVttREtMFIV rT

t  .                               (C.4) 
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The τ-period risk-neutral skewness, ),( tSKEW , is given by:   
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The τ-period risk-neutral kurtosis, ),( tKURT , is given by:   
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where 
*
tE  denotes the expected value operator under the risk-neutral measure, and  

)},({),( *  tREt t  denotes the τ-period mean of the log-relative asset return given as: 
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24
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r  . Moreover, );,( KtC   and );,( KtP   

denote the prices of European call and put options respectively, traded on day t, with maturity 

τ and strike price K . Please refer to the original paper for further details (Bakshi et al., 

(2003), p. 106-107).   
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Figures 

Figure 1: Daily evolution of the S&P 500 Debt-to-Equity against the S&P 500 Index level  
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Figure 2: Daily evolution of the S&P 500 Debt-to-Equity against the MDLI measure  
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Figure 3: Daily evolution of the alternative MDLI measures against the S&P 500 index level 

 

 
 
This figure plots the daily evolution of the three alternative MDLI measures against the S&P 500 Index level from January 1998 to December 2007. The top panel depicts the 

MDLI when the expected return of the firm’s assets is equal to the firm’s stock return over the previous year ( Er ). The middle panel depicts the MDLI when the expected 

return of the firm’s assets is equal to the alternative return estimate described in Appendix B ( Gr ). The bottom panel depicts the MDLI when the expected return of the firm’s 

assets is equal to the prevailing risk-free rate ( Fr ). 
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Tables  

 

Table 1 

Summary statistics: Means, standard deviations and percentiles 

 
    Percentiles  

Variable Mean Std. Dev. Min 0.25 0.50 0.75 0.95 0.99 Max 

 Panel A: Merton DD model variables (computed across firm observations) 

E  20,126.9 35,442.0 838.6 4,042.5 8,311.9 17,972.5 84,619.3 224,918.8 228,722.3 

F  2,272.3 3,379.3 1.1 324.1 949.8 2,873.6 8,730.2 18,580.9 21,684.9 

TANI /  0.015 0.027 -0.441 0.006 0.015 0.025 0.048 0.074 0.407 

Fr  0.038 0.016 0.009 0.022 0.042 0.051 0.062 0.063 0.064 

Er  -0.027 0.391 -1.416 -0.216 0.026 0.214 0.519 0.862 0.862 

Gr  -0.011 0.332 -1.202 -0.171 0.027 0.188 0.464 0.760 0.799 

E  0.410 0.225 0.135 0.250 0.344 0.490 0.869 1.188 1.189 

V  0.355 0.218 0.052 0.207 0.289 0.419 0.815 1.108 1.189 
 

         

 Panel B: Market default-risk measures (computed by aggregating all daily firm observations) 

EV r



Merton  0.022 0.022 0.000 0.004 0.013 0.033 0.070 0.087 0.102 

FV r



Merton  0.003 0.003 0.000 0.001 0.002 0.003 0.012 0.014 0.014 

GV r



Merton  0.011 0.012 0.000 0.002 0.007 0.017 0.041 0.049 0.055 

This table reports summary statistics for variables used in the Merton DD model estimation (Panel A) and for the 

estimated market default-risk measures (Panel B). The sample spans from January 1998 to December 2007. 

Variables presented in Panel A have been winsorized at 1
st
 and 99

th
 percentiles. E  is the market value of equity 

measured in millions of dollars computed by multiplying the firm’s shares outstanding by its stock price at the end 

of each day. F  is the face value of debt in millions of dollars and equals debt in current liabilities plus one-half of 

the long-term debt. TANI /  is net income over the book value of total assets, Fr  is the risk-free rate measured as 

the 1-year treasury constant maturity rate, Er  is the expected return on the firm’s assets and is equal to the firm’s 

stock returns over the previous year, Gr  is an alternative estimate of the expected return on the firm’s assets 

(given in Appendix B), E  is the equity’s volatility measured to be the annualized standard deviation of daily 

returns using prior’s year stock data and V  is the volatility of the market value of the firm’s assets that is derived 

when estimating the Merton DD model. Variables presented in Panel B are the three different market default 

likelihood index (MDLI) measures derived after aggregating daily the probability-to-default values of individual 

firms. 
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Table 2 

Correlation coefficients for daily levels and changes  

 
Panel A: Correlation coefficients between daily S&P 500 Index levels and levels of 

market default likelihood index measures 

 SP500 EV r



Merton  FV r




Merton  GV r



Merton   

SP500  -0.252 -0.406 -0.299  

EV r



Merton  -0.409  0.763 0.954 

 

FV r




Merton  -0.618 0.827  0.844 
 

GV r



Merton  -0.491 0.977 0.893  

 

 
Panel B: Correlation coefficients between daily S&P 500 Index returns and changes in 

values of market default likelihood index measures 

 RET EV r




Merton  FV r



Merton  GV r




Merton   

RET  -0.550 -0.541 -0.545  

EV r




Merton  -0.594  0.578 0.910 
 

FV r



Merton  -0.313 0.562  0.667 

 

GV r




Merton  -0.571 0.937 0.703  
 

This table reports the Pearson’s correlations (lower diagonal) and Spearman’s rank correlations (upper 

diagonal) between the market default likelihood index (MDLI) measures, the S&P 500 Index level, 

SP500, and the S&P 500 Index return, RET. Panel A reports correlation coefficients for the levels of 

the MDLI measures. Panel B reports correlation coefficients for the corresponding first differences 

(i.e., daily changes) of the MDLI measures. All correlation coefficients are statistically significant at 

the 1% significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

Table 3 

Option sample characteristics  

Delta value category 1 2 3 4 5 Totals 

 Panel A: Call Options 

Moneyness DITM ITM ATM OTM DOTM ALL 

Call Delta (
c ) 

]000.1

,875.0(  
]875.0

,625.0(  
]625.0

,375.0(  
]375.0

,125.0(  
]125.0

,000.0(  
]000.1

,000.0(  

Number of obs. 18,874 28,604 50,925 55,657 18,677 172,737 

Option value 108.857 72.621 44.146 13.734 3.268 41.713 

% Bid-Ask spread 2.324 3.782 5.833 13.402 25.604 9.686 

Implied volatility 0.234 0.213 0.202 0.177 0.164 0.195 

Option volume 230 502 1,500 1,173 930 1,029 

Volume proportion 0.009 0.031 0.164 0.140 0.037 0.382 
       

 Panel B: Put Options 

Moneyness DOTM OTM ATM ITM DITM ALL 

Put Delta (
p ) 

]000.0

,125.0(  
]125.0

,375.0(



  
]375.0

,625.0(



  
]625.0

,875.0(



  
]875.0

,000.1(



  
]000.0

,000.1(  

Number of obs. 60,501 58,152 50,628 24,947 6,112 200,340 

Option value 7.364 25.526 47.864 71.695 103.814 33.824 

% Bid-Ask spread 17.613 8.591 5.410 4.058 2.721 9.768 

Implied volatility 0.233 0.221 0.199 0.186 0.234 0.215 

Option volume 1,612 1,554 1,681 506 231 1,433 

Volume proportion 0.210 0.194 0.183 0.027 0.003 0.618 

       

This table reports sample characteristics of the option dataset for the period spanning from January 

1998 to December 2007. The figures presented are for different moneyness classes created using calls’, 

c , and puts’, 
p  option delta values. The proxy for the volatility rate used in the delta calculations is 

the realized return volatility of the S&P 500 Index over the most recent sixty trading days. Panel A 

displays information for call options. Panel B displays information for put options. The first line of 

figures of each panel refers to the moneyness class number of option observations, the second line 

refers to the moneyness class average option market prices (mid-point of the bid-ask prices), the third 

line refers to the moneyness class average percentage bid-ask spread value, the fourth line refers to the 

moneyness class average implied volatility computed via the Black–Scholes (1973) model, the fifth 

line refers to the moneyness class average option volume, while the last line reports the moneyness 

class proportion of the total (calls and puts) option trading volume. Moneyness classes are as follows. 

DOTM = deep-out-the-money options; OTM = out-the-money options; ATM = at-the-money options; 

ITM = in-the-money options; and DITM = Deep-in-the-money options. 
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Table 4 

Summary statistics of the S&P 500 Index option-implied risk-neutral moments 

 
30MFIV  30SKEW  30KURT  60MFIV  60SKEW  60KURT  91MFIV  91SKEW  91KURT  

 Panel A: Full period (1998-2007) 

Min 0.092 -2.466 3.238 0.104 -2.493 3.101 0.111 -2.341 2.881 

Mean 0.199 -1.259 5.668 0.206 -1.298 5.469 0.207 -1.190 4.816 

t-stat 54.200 -78.629 94.818 66.846 -87.296 85.292 70.655 -82.100 82.960 

Median 0.198 -1.243 5.472 0.206 -1.282 5.141 0.208 -1.147 4.404 

Max 0.460 -0.407 11.928 0.434 -0.598 11.546 0.431 -0.424 9.618 

          

 Panel B: First period (1998-2002) 

Min 0.157 -2.064 3.238 0.167 -1.701 3.101 0.170 -1.524 2.881 

Mean 0.244 -1.230 5.463 0.246 -1.127 4.643 0.245 -0.995 4.020 

t-stat 62.420 -62.360 79.980 79.854 -89.214 118.762 84.656 -99.590 159.007 

Median 0.230 -1.225 5.338 0.235 -1.125 4.616 0.236 -0.990 3.994 

Max 0.460 -0.407 9.440 0.434 -0.598 6.713 0.431 -0.424 5.502 

          

 Panel C: Second period (2003-2007) 

Min 0.092 -2.466 3.621 0.104 -2.493 3.340 0.111 -2.341 2.951 

Mean 0.154 -1.289 5.878 0.163 -1.477 6.326 0.166 -1.395 5.651 

t-stat 39.726 -51.298 61.272 48.072 -70.698 69.676 51.853 -73.713 69.894 

Median 0.139 -1.263 5.659 0.148 -1.491 6.346 0.151 -1.415 5.617 

Max 0.349 -0.532 11.928 0.349 -0.661 11.546 0.334 -0.549 9.618 

          

 Panel D: t-statistics for the difference in mean values between the two periods 

Diff 0.090 0.059 -0.415 0.083 0.350 -1.682 0.079 0.399 -1.631 

t-stat 38.616 4.194 -7.988 43.441 33.462 -39.609 44.287 41.759 -43.171 

This table reports summary statistics for the S&P 500 Index option-implied risk-neutral moments. The sample spans from 

January 1998 to December 2007 and includes 2,514 trading days, out of which 1,256 belong in the period 1998-2002 and 

1,258 belong in the period 2003-2007. 
30MFIV , 

60MFIV , 
91MFIV  is the 30-day, 60-day and 91-day risk-neutral volatility, 

respectively; 
30SKEW ,  

60SKEW  and 
91SKEW  is the 30-day, 60-day and 91-day risk-neutral skewness, respectively; 

30KURT , 
60KURT  and 

91KURT  is the 30-day, 60-day and 91-day risk-neutral kurtosis, respectively. Panel A presents 

summary statistics for the whole sample period (1998-2007), Panel B presents summary statistics for the first period 

(1998-2002), Panel C presents summary statistics for the second period (2003-2007) and Panel D presents t-statistics for 

the difference in mean values between the two periods. Newey-West (1987) robust standard errors are employed to 

estimate the t-statistics in Panels A, B and C, while White (1980) robust standard errors are employed to estimate the t-

statistics in Panel D.  
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Table 5 

Variable characteristics allocated on groups formed using information based on orthogonalized MDLI measures 

  Ahead
30  

Calls
3  

Puts
3  60MFIV  60SKEW  60KURT  91MFIV  91SKEW  91KURT    

            

                  SP500

,t  Panel A: Sorting based on the market default-risk measure after removing the effect of the S&P 500 index ( tSP500 ) 

LOW -0.016 0.120 0.147 0.144 0.161 -1.504 6.405 0.165 -1.405 5.679   

 0.005 0.200 0.220 0.218 0.244 -1.178 4.773 0.243 -1.041 4.108   

HIGH 0.032 0.229 0.232 0.229 0.255 -0.985 4.265 0.252 -0.906 3.832   

Diff. 

(t-stat) 

0.048 

(108.11) 

0.109 

(31.53) 

0.085 

(42.46) 

0.085 

(39.71) 

0.093 

(36.27) 

0.519 

(49.88) 

-2.140 

(-52.18) 

0.087 

(37.47) 

0.499 

(50.69) 

-1.847 

(-47.85)  
 

             

                (hist)
,

 t
 Panel B: Sorting based on the market default-risk measure after removing the effect of the 30-days historical volatility (

Hist

t,30 ) 

LOW -0.011 0.152 0.181 0.178 0.202 -1.394 5.752 0.203 -1.254 4.930   

 0.002 0.153 0.169 0.166 0.185 -1.332 5.727 0.187 -1.262 5.237   

HIGH 0.024 0.217 0.223 0.220 0.245 -1.019 4.402 0.244 -0.931 3.911   

Diff. 

(t-stat) 

0.035 
(55.34) 

0.065 
(17.86) 

0.042 
(17.94) 

0.042 
(17.53) 

0.044 
(15.53) 

0.375 
(32.17) 

-1.350 
(29.16) 

0.040 
(15.26) 

0.323 
(31.07) 

-1.019 
(-27.18)  

 
             

                  VIX
,t

 Panel C: Sorting based on the market default-risk measure after removing the effect of the CBOE VIX index (
1VIX t

) 

LOW -0.011 0.163 0.193 0.190 0.216 -1.358 5.513 0.217 -1.208 4.681   

 0.003 0.137 0.151 0.149 0.165 -1.400 6.123 0.168 -1.345 5.635   

HIGH 0.024 0.216 0.221 0.218 0.242 -1.002 4.382 0.240 -0.917 3.909   

Diff. 

(t-stat) 

0.035 

(61.29) 

0.053 

(15.61) 

0.028 

(12.81) 

0.028 

(12.55) 

0.026 

(9.76) 

0.356 

(32.84) 

-1.131 

(26.18) 

0.023 

(9.19) 

0.291 

(29.34) 

-0.772 

(-22.61)  
 

             

                    all
,t  Panel D: Sorting based on the market default-risk measure after removing the effect of: tSP500 , 

Hist

t,30 and 
1VIX t

 

LOW -0.016 0.119 0.147 0.143 0.161 -1.506 6.415 0.164 -1.407 5.688   

 0.005 0.201 0.220 0.218 0.244 -1.175 4.760 0.243 -1.038 4.097   

HIGH 0.032 0.229 0.233 0.229 0.255 -0.984 4.260 0.252 -0.905 3.828   

Diff. 

(t-stat) 

0.048 

(108.37) 

0.110 

(31.71) 

0.086 

(42.64) 

0.086 

(39.92) 

0.094 

(36.36) 

0.522 

(50.50) 

-2.155 

(-52.63) 

0.088 

(37.53) 

0.502 

(51.70) 

-1.860 

(-48.38)  
 

             

This table reports the group mean values of variables created using information of the MDLI measure, EV r

t






Merton, , orthogonalized on the following set of variables: the level 

of the S&P 500 index, tSP500 , the 30-day historical volatility, 
Hist

t,30 , and the one-day lagged VIX level, 
1VIX t
. The option-related variables include the 30-day-ahead 

realized volatility, 
Ahead

t,30 , the mean implied volatility of at-the-money calls belonging in delta moneyness category 3, 
Calls

t,3 , the mean implied volatility of at-the-money 
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puts belonging in delta moneyness category 3, 
Puts

t,3 , and the 60- and 91-day risk-neutral volatility, skewness and kurtosis ( 60MFIV , 60SKEW , 60KURT , 91MFIV ,

91SKEW  and 91KURT  respectively). Panel A presents the mean values of variables for groups formed using 
SP500

,t , which is the residual from regressing EV r

t






Merton,  on 

tSP500 . Likewise, Panel B and Panel C present the mean values of variables for groups formed using 
(Hist)
,

 t  and 
VIX

,t , which are the residuals from regressing EV r

t






Merton,  

on Hist
t,30  and 

1VIX t
, respectively. Finally, Panel D presents the mean values of variables for groups formed using 

all
,t , which is the residual from regressing EV r

t






Merton,  on 

tSP500 , Hist
t,30  and 

1VIX t
 (all at once). The first three lines of figures of each panel present the mean values of each variable for the LOW (orthogonalized EV r

t






Merton,  values 

less than 50
th

 percentile), MEDIUM (orthogonalized EV r

t






Merton, values between the 50
th

 and 80
th

 percentiles) and HIGH (orthogonalized EV r

t






Merton, values greater than 80
th

 

percentile) groups, respectively.  The fourth (fifth) line of each panel, present the numerical difference (t-statistics) between the values of the LOW and HIGH portfolios. 
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Table 6 

Correlation coefficients between the S&P 500 Index option-implied risk-neutral moments and economic variables 

  tMFIV ,60
 

tSKEW ,60
 

tKURT ,60
 

tMON  tIdxMom  
1VIX t  1IdxVol t

 
tTbMom  

tA-B  1OptVol t
 

tBWsent  
tNBP  tRET  EV r

t






Merton,  

tMFIV ,60   0.651 -0.838 0.003 0.266 0.049 0.007 -0.485 0.676 0.004 -0.426 -0.479 -0.068 0.711 

tSKEW ,60  0.636  -0.928 0.023 0.157 0.026 -0.006 -0.352 0.418 -0.011 -0.121 -0.484 -0.060 0.785 

tKURT ,60  -0.788 -0.936  -0.019 -0.265 -0.048 -0.001 0.430 -0.571 0.002 0.248 0.535 0.081 -0.810 

tMON  0.003 0.022 -0.020  -0.006 -0.105 -0.194 0.045 0.007 -0.092 -0.006 0.011 0.003 0.005 

tIdxMom  0.358 0.225 -0.281 -0.003  0.120 0.015 -0.040 0.224 0.013 -0.032 -0.594 -0.235 0.175 

1VIX t  0.062 0.033 -0.048 -0.078 0.148  0.022 0.010 0.020 0.090 0.008 -0.067 0.004 0.003 

1IdxVol t  0.003 -0.001 -0.002 -0.178 0.015 0.069  -0.027 0.022 0.478 -0.004 0.003 0.012 0.001 

tTbMom  -0.481 -0.298 0.358 0.032 -0.132 0.013 -0.006  -0.364 -0.021 -0.006 0.169 0.018 -0.286 

tA-B  0.318 0.171 -0.243 0.021 0.181 0.019 -0.012 -0.202  0.014 -0.309 -0.347 -0.061 0.476 

1OptVol t  0.005 -0.009 0.001 -0.095 0.012 0.099 0.514 -0.008 0.020  -0.005 0.008 0.010 -0.005 

tBWsent  -0.427 -0.182 0.323 -0.007 -0.018 0.006 -0.003 0.016 -0.169 -0.001  0.148 -0.016 -0.155 

tNBP  -0.450 -0.483 0.532 0.006 -0.475 -0.063 0.000 0.164 -0.131 0.007 0.215  0.162 -0.482 

tRET  -0.077 -0.053 0.072 -0.003 -0.256 0.005 0.016 0.006 -0.051 0.005 -0.017 0.142  -0.019 
EV r

t






Merton,  0.701 0.704 -0.687 0.005 0.222 0.000 -0.001 -0.304 0.170 -0.002 -0.171 -0.378 0.001  
               

VIF --- --- --- 1.040 1.431 1.042 1.392 1.142 1.108 1.368 1.101 1.498 1.080 1.285 

               

This table reports the Pearson’s correlations (lower diagonal) and Spearman’s rank correlations (upper diagonal) between variables for the period 1998-2007. Definitions of the economic 

determinants are provided in Section 4.4 of the manuscript. The bottom of the table reports the variance inflation factor (VIF) which is used for co-linearity diagnostic between the variables 

used as predictors in the multivariate regression analysis. 
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Table 7 

Regression analysis: MDLI as an economic determinant of the S&P 500 Index 

risk-neutral moments  

 60MFIV  
60SKEW  60KURT  91MFIV  

91SKEW  91KURT  

                                   Panel A: First period (1998-2002) 

Constant YES YES YES YES YES YES 

1ty  0.943*** 0.467*** 0.538*** 0.927*** 0.389*** 0.401*** 

2ty  0.030 0.420*** 0.354*** 0.049* 0.385*** 0.371*** 

EV r

t






Merton,  3.184*** 5.969*** -35.374*** 2.783*** 3.195** -19.359*** 
       

Adj. R2 0.956 0.712 0.732 0.960 0.490 0.490 
       

                                      Panel B: Second period (2003-2007) 

Constant YES YES YES YES YES YES 

1ty  0.863*** 0.627*** 0.636*** 0.849*** 0.559*** 0.572*** 

2ty  0.124*** 0.329*** 0.299*** 0.139*** 0.358*** 0.317*** 

EV r

t






Merton,  2.409*** 8.113** -38.486*** 2.055*** 9.414** -41.175*** 

       

Adj. R2 0.975 0.884 0.840 0.979 0.788 0.729 

This table reports the results for regression models that investigate the relation between risk-neutral moments 

and the market default likelihood index (MDLI) for the periods 1998–2002 (Panel A) and 2003–2007 (Panel 

B). The dependent variables are as follows: 
60MFIV  (

91MFIV ) is the 60-day (91-day) risk-neutral volatility,  

60SKEW  (
91SKEW ) is the 60-day (91-day) risk-neutral skewness, and 

60KURT  (
91KURT ) is the 60-day (91-

day) risk-neutral kurtosis, computed at time t. Standard errors are adjusted for heteroskedasticity and serial 

correlation according to Newey and West (1987). Asterisks *, **, *** indicate significance at the 10%, 5% 

and 1% levels, respectively. 
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Table 8 

Regression analysis: Economic determinants of the S&P 500 Index option 

implied risk-neutral moments  

 60MFIV  
60SKEW  60KURT  91MFIV  

91SKEW  91KURT  

                                   Panel A: First period (1998-2002) 

Constant YES YES YES YES YES YES 

1ty  0.790*** 0.439*** 0.476*** 0.726*** 0.368*** 0.352*** 

2ty  0.192*** 0.421*** 0.366*** 0.260*** 0.368*** 0.340*** 

tMON  -0.001 0.031*** -0.084*** 0.000 0.015 -0.032 

tIdxMom  -0.004 0.117* -0.446** -0.002 0.126 -0.672*** 

1VIX t  0.144*** 0.844*** -3.212*** 0.176*** 0.553*** -1.895*** 

1IdxVol t  -0.001 0.027* -0.069 -0.001 0.029 -0.080 

tTbMom  -0.020 -0.500*** 0.585 -0.028** -0.417** 0.264 

tA-B  0.001 0.019** -0.093*** 0.001 0.015 -0.071** 

1OptVol t  0.001 -0.014 0.037 0.001* -0.021* 0.045* 

tBWsent  0.000 0.001 -0.006 0.000 -0.002 0.000 

tNBP  0.003*** -0.028** 0.107*** 0.003*** -0.039** 0.109** 

tRET  -0.694*** -1.027*** 7.573*** -0.564*** -0.535 4.202*** 

EV r

t






Merton,  3.054*** 3.406** -26.252*** 2.628*** 1.159 -11.574*** 

tRET  * EV r

t






Merton,  -14.453** 6.726 -41.299 -13.297* 117.837 -161.287 

EV r

t






Merton,  0.748*** 0.012 -8.204 0.572*** -0.244 -8.157 

       
Adj. R2 0.982 0.728 0.767 0.981 0.506 0.527 

       

                                      Panel B: Second period (2003-2007) 

Constant YES YES YES YES YES YES 

1ty  0.889*** 0.61*** 0.581*** 0.762*** 0.529*** 0.523*** 

2ty  0.098 0.317*** 0.311*** 0.225*** 0.342*** 0.306*** 

tMON  -0.001*** 0.025*** -0.061 -0.001* 0.023** -0.098* 

tIdxMom  0.003 -0.325** 1.170* 0.002 -0.196 0.148 

1VIX t  0.055 0.956** -6.718*** 0.131*** 1.26*** -6.732*** 

1IdxVol t  -0.002 0.014 -0.019 -0.001 0.012 -0.043 

tTbMom  -0.012 -0.323** 0.732 -0.009 -0.362** 0.663 

tA-B  0.000 -0.006 -0.015 0.000 0.005 -0.061 

1OptVol t  0.000 -0.012 0.007 0.000 -0.009 0.011 

tBWsent  0.000 0.002 -0.015 0.000 0.003 -0.017 

tNBP  0.001*** -0.024** 0.199*** 0.001** -0.037** 0.241*** 

tRET  -0.835*** -4.867*** 23.779*** -0.688*** -4.671*** 21.044*** 

EV r

t






Merton,  2.981*** 12.162*** -52.95*** 2.512*** 11.776*** -45.246*** 

tRET  * EV r

t






Merton,  -15.153** -238.518*** 1,601.65*** -13.136** -300.189*** 1,491.851*** 
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EV r

t






Merton,  0.512* 14.448*** -85.939*** 0.509** 19.647*** -90.913*** 

       

Adj. R2 0.992 0.900 0.862 0.991 0.810 0.755 

This table reports the results for regression models that investigate the relation between risk-neutral moments 

and a set of economic determinants for the periods 1998–2002 (Panel A) and 2003–2007 (Panel B). The 

dependent variables are as follows: 
60MFIV  (

91MFIV ) is the 60-day (91-day) risk-neutral volatility,  
60SKEW  (

91SKEW ) is the 60-day (91-day) risk-neutral skewness, and 
60KURT  (

91KURT ) is the 60-day (91-day) risk-

neutral kurtosis, computed at time t. Definitions of the economic determinants are provided in Section 4.4 of 

the manuscript. Standard errors are adjusted for heteroskedasticity and serial correlation according to Newey 

and West (1987). Asterisks *, **, *** indicate significance at the 10%, 5% and 1% levels, respectively. 


