105 research outputs found

    Metal Oxide Nanowires as Building Blocks for Optoelectronic Devices

    Get PDF
    Metal oxide nanowires have become the new building blocks for the next generation optoelectronic devices due to their specific features such as quantum confinement and high aspect ratio. Thus, they can be integrated as active components in diodes, field effect transistors, photodetectors, sensors, solar cells and so on. ZnO, a n-type semiconductor with a direct wide band gap (3.3 eV) and CuO, a p-type semiconductor with a narrow band gap (1.2–1.5 eV), are two metal oxides which were recently in the spotlight of the researchers for applications in the optoelectronic devices area. Therefore, in this chapter we focused on ZnO and CuO nanowires, the metal oxides nanowire arrays being prepared by straightforward wet and dry methods. Further, in order to emphasize their intrinsic transport properties, lithographic and thin films deposition techniques were used to integrate single ZnO and CuO nanowires into diodes and field effect transistors

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Fabrication of ZnO and TiO2 Nanotubes via Flexible Electro-Spun Nanofibers for Photocatalytic Applications

    No full text
    Web-like architectures of ZnO and TiO2 nanotubes were fabricated based on a three-step process of templating polymer nanofibers produced by electrospinning (step 1). The electrospun polymer nanofibers were covered by radio-frequency magnetron sputtering with thin layers of semiconducting materials (step 2), with FESEM observations proving uniform deposits over their entire surface. ZnO or TiO2 nanotubes were obtained by subsequent calcination (step 3). XRD measurements proved that the nanotubes were of a single crystalline phase (wurtzite for ZnO and anatase for TiO2) and that no other crystalline phases appeared. No other elements were present in the composition of the nanotubes, confirmed by EDX measurements. Reflectance spectra and Tauc plots of Kubelka–Munk functions revealed that the band gaps of the nanotubes were lower than those of the bulk materials (3.05 eV for ZnO and 3.16 eV for TiO2). Photocatalytic performances for the degradation of Rhodamine B showed a large degradation efficiency, even for small quantities of nanotubes (0.5 mg/10 mL dye solution): ~55% for ZnO, and ~95% for TiO2

    Thin Films Based on Cobalt Phthalocyanine:C60 Fullerene:ZnO Hybrid Nanocomposite Obtained by Laser Evaporation

    No full text
    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit hybrid nanocomposite thin films based on cobalt phthalocyanine (CoPc), C60 fullerene and ZnO nanoparticles. The inorganic nanoparticles, with a size of about 20 nm, having the structural and optical properties characteristic of ZnO, were chemically synthesized by a simple precipitation method. Furthermore, ZnO nanoparticles were dispersed in a dimethyl sulfoxide solution in which CoPc and C60 had been dissolved, ready for the freezing MAPLE target. The effect of the concentration of ZnO nanoparticles on the structural, morphological, optical and electrical properties of the CoPc:C60:ZnO hybrid nanocomposite layers deposited by MAPLE was evaluated. The infrared spectra of the hybrid nanocomposite films confirm that the CoPc and C60 preserve their chemical structure during the laser deposition process. The CoPc optical signature is recognized in the ultraviolet–visible (UV–Vis) spectra of the obtained layers, these being dominated by the absorption bands associated to this organic compound while the ZnO optical fingerprint is identified in the photoluminescence spectra of the prepared layers, these disclosing the emission bands linked to this inorganic semiconductor. The hybrid nanocomposite layers exhibit globular morphology, which is typical for the thin films deposited by MAPLE. Current-voltage (J-V) characteristics of the structures developed on CoPc:C60:ZnO layers reveal that the addition of an appropriate amount of ZnO nanoparticles in the CoPc:C60 mixture leads to a more efficient charge transfer between the organic and inorganic components. Due to their photovoltaic effect, structures featuring such hybrid nanocomposite thin films deposited by MAPLE can have potential applications in the field of photovoltaic devices

    Electrical properties of single CdTe nanowires

    No full text
    Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties

    Silver nanoparticles decorated ZnO–CuO core–shell nanowire arrays with low water adhesion and high antibacterial activity

    No full text
    Abstract Nanostructured surfaces based on silver nanoparticles decorated ZnO–CuO core–shell nanowire arrays, which can assure protection against various environmental factors such as water and bacteria were developed by combining dry preparation techniques namely thermal oxidation in air, radio frequency (RF) magnetron sputtering and thermal vacuum evaporation. Thus, high-aspect-ratio ZnO nanowire arrays were grown directly on zinc foils by thermal oxidation in air. Further ZnO nanowires were coated with a CuO layer by RF magnetron sputtering, the obtained ZnO–CuO core–shell nanowires being decorated with Ag nanoparticles by thermal vacuum evaporation. The prepared samples were comprehensively assessed from morphological, compositional, structural, optical, surface chemistry, wetting and antibacterial activity point of view. The wettability studies show that native Zn foil and ZnO nanowire arrays grown on it are featured by a high water droplet adhesion while ZnO–CuO core–shell nanowire arrays (before and after decoration with Ag nanoparticles) reveal a low water droplet adhesion. The antibacterial tests carried on Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) emphasize that the nanostructured surfaces based on nanowire arrays present excellent antibacterial activity against both type of bacteria. This study proves that functional surfaces obtained by relatively simple and highly reproducible preparation techniques that can be easily scaled to large area are very attractive in the field of water repellent coatings with enhanced antibacterial function
    corecore