64 research outputs found
High-resolution laser resonances of antiprotonic helium in superfluid 4He
When atoms are placed into liquids, their optical spectral lines corresponding to the electronic transitions are greatly broadened compared to those of single, isolated atoms. This linewidth increase can often reach a factor of more than a million, obscuring spectroscopic structures and preventing high-resolution spectroscopy, even when superfluid helium, which is the most transparent, cold and chemically inert liquid, is used as the host material(1-6). Here we show that when an exotic helium atom with a constituent antiproton(7-9) is embedded into superfluid helium, its visible-wavelength spectral line retains a sub-gigahertz linewidth. An abrupt reduction in the linewidth of the antiprotonic laser resonance was observed when the liquid surrounding the atom transitioned into the superfluid phase. This resolved the hyperfine structure arising from the spin-spin interaction between the electron and antiproton with a relative spectral resolution of two parts in 10(6), even though the antiprotonic helium resided in a dense matrix of normal matter atoms. The electron shell of the antiprotonic atom retains a small radius of approximately 40 picometres during the laser excitation(7). This implies that other helium atoms containing antinuclei, as well as negatively charged mesons and hyperons that include strange quarks formed in superfluid helium, may be studied by laser spectroscopy with a high spectral resolution, enabling the determination of the particle masses(9). The sharp spectral lines may enable the detection of cosmic-ray antiprotons(1)(0,)(11) or searches for antideuterons(12) that come to rest in liquid helium targets
Observation of the hyperfine transition in lithium-like Bismuth : Towards a test of QED in strong magnetic fields
We performed a laser spectroscopic determination of the hyperfine
splitting (HFS) of Li-like and repeated the measurement
of the HFS of H-like . Both ion species were
subsequently stored in the Experimental Storage Ring at the GSI
Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an
electron cooler at a velocity of . Pulsed laser excitation of
the hyperfine-transition was performed in anticollinear and collinear
geometry for and , respectively, and
observed by fluorescence detection. We obtain for , different from the literature
value, and for .
These values provide experimental evidence that a specific difference between
the two splitting energies can be used to test QED calculations in the
strongest static magnetic fields available in the laboratory independent of
nuclear structure effects. The experimental result is in excellent agreement
with the theoretical prediction and confirms the sum of the Dirac term and the
relativistic interelectronic-interaction correction at a level of 0.5%
confirming the importance of accounting for the Breit interaction.Comment: 5 pages, 2 figure
Microwave spectroscopic study of the hyperfine structure of antiprotonic helium-3
In this work we describe the latest results for the measurements of the
hyperfine structure of antiprotonic helium-3. Two out of four measurable
super-super-hyperfine SSHF transition lines of the (n,L)=(36,34) state of
antiprotonic helium-3 were observed. The measured frequencies of the individual
transitions are 11.12548(08) GHz and 11.15793(13) GHz, with an increased
precision of about 43% and 25% respectively compared to our first measurements
with antiprotonic helium-3 [S. Friedreich et al., Phys. Lett. B 700 (2011)
1--6]. They are less than 0.5 MHz higher with respect to the most recent
theoretical values, still within their estimated errors. Although the
experimental uncertainty for the difference of 0.03245(15) GHz between these
frequencies is large as compared to that of theory, its measured value also
agrees with theoretical calculations. The rates for collisions between
antiprotonic helium and helium atoms have been assessed through comparison with
simulations, resulting in an elastic collision rate of gamma_e = 3.41 +- 0.62
MHz and an inelastic collision rate of gamma_i = 0.51 +- 0.07 MHz.Comment: 15 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1102.528
Improved X-ray detection and particle identification with avalanche photodiodes
Avalanche photodiodes are commonly used as detectors for low energy x-rays.
In this work we report on a fitting technique used to account for different
detector responses resulting from photo absorption in the various APD layers.
The use of this technique results in an improvement of the energy resolution at
8.2 keV by up to a factor of 2, and corrects the timing information by up to 25
ns to account for space dependent electron drift time. In addition, this
waveform analysis is used for particle identification, e.g. to distinguish
between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure
The Lamb shift in muonic hydrogen and the proton radius
By means of pulsed laser spectroscopy applied to muonic hydrogen (ÎŒâ p) we have measured the 2S F = 1 1/2 â 2PF = 2 3/2 transition frequency to be 49881.88(76) GHz. By comparing this measurement with its theoretical prediction based on bound-state QED we have determined a proton radius value of rp = 0.84184 (67) fm. This new value is an order of magnitude preciser than previous results but disagrees by 5 standard deviations from the CODATA and the electronproton scattering values. An overview of the present effort attempting to solve the observed discrepancy is given. Using the measured isotope shift of the 1S-2S transition in regular hydrogen and deuterium also the rms charge radius of the deuteron rd = 2.12809 (31) fm has been determined. Moreover we present here the motivations for the measurements of the ÎŒ 4He + and ÎŒ 3He + 2S-2P splittings. The alpha and triton charge radii are extracted from these measurements with relative accuracies of few 10 â 4. Measurements could help to solve the observed discrepancy, lead to the best test of hydrogen-like energy levels and provide crucial tests for few-nucleon ab-initio theories and potentials
The Lamb shift in muonic hydrogen
The long quest for a measurement of the Lamb shift in muonic hydrogen is over. Last year we measured the 2S1/2F=1â2P3/2F=2 energy splitting (Pohl et al., Nature, 466, 213 (2010)) in ÎŒp with an experimental accuracy of 15 ppm, twice better than our proposed goal. Using current QED calculations of the fine, hyperfine, QED, and finite size contributions, we obtain a root-mean-square proton charge radius of rpâ=â0.841â84â(67) fm. This value is 10 times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of rp. The origin of this discrepancy is not known. Our measurement, together with precise measurements of the 1Sâ2S transition in regular hydrogen and deuterium, gives improved values of the Rydberg constant, Rââ=â10â973â731.568â160â(16) mâ»Âč and the rms charge radius of the deuteron rdâ=â2.128â09â(31) fm
The size of the proton and the deuteron
We have recently measured the 2S1/2âŒÂč â 2P3/2 ⌠ÂČ energy splitting in the muonic hydrogen atom ÎŒp to be 49881.88 (76) GHz. Using recent QED calculations of the fine-, hyperfine, QED and finite size contributions we obtain a root-mean-square proton charge radius of rp = 0.84184 (67) fm. This value is ten times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of rp = 0.8768 (69) fm. The source of this discrepancy is unknown. Using the precise measurements of the 1S-2S transition in regular hydrogen and deuterium and our value of rp we obtain improved values of the Rydberg constant, Râ = 10973731.568160 (16) mâ»Âčand the rms charge radius of the deuteron rd = 2.12809 (31) fm
The Lamb shift in muonic hydrogen 1
Abstract: The long quest for a measurement of the Lamb shift in muonic hydrogen is over. Last year we measured the energy splitting (Pohl et al., Nature, 466, 213 (2010)) in mp with an experimental accuracy of 15 ppm, twice better than our proposed goal. Using current QED calculations of the fine, hyperfine, QED, and finite size contributions, we obtain a rootmean-square proton charge radius of r p = 0.841 84 (67) fm. This value is 10 times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of r p . The origin of this discrepancy is not known. Our measurement, together with precise measurements of the 1S-2S transition in regular hydrogen and deuterium, gives improved values of the Rydberg constant, R ? = 10 973 731.568 16
- âŠ