64 research outputs found

    Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data

    Get PDF
    Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal structure of tri-p-benzamide. The same procedure is then applied to solve the previously unknown crystal structure of tetra-p-benzamide. In the crystal structure of tetra-p-benzamide, an unusual hydrogen-bonding scheme is realised; the hydrogen-bonding scheme is, however, in perfect agreement with solid-state NMR data

    Coordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids

    Get PDF
    Lithium salts with low coordinating anions such as bis(trifluoromethanesulfonyl)imide (TFSI) have been the state-of-the-art for polyethylene oxide (PEO)-based “dry” polymer electrolytes for 3 dec- ades. Plasticizing PEO with TFSI-based ionic liquids (ILs) to form ternary solid polymer electrolytes (TSPEs) increases conductivity and Li+ diffusivity. However, the Li+ transport mechanism is unaffected compared to their “dry” counterparts and is essentially coupled to the dynamics of the polymer host matrix, which limits Li+ transport improvement. Thus, a paradigm shift is hereby suggested: the utilization of more coordinating anions such as trifluo- romethanesulfonyl-N-cyanoamide (TFSAM), able to compete with PEO for Li+ solvation, to accelerate the Li+ transport and reach a higher Li+ transfer- ence number. The Li–TFSAM interaction in binary and ternary TFSAM-based electrolytes is probed by experimental methods and discussed in the context of recent computational results. In PEO-based TSPEs, TFSAM drastically accelerates the Li+ transport (increases Li+ transference number by a factor 6 and the Li+ conductivity by 2–3) and computer simulations reveal that lithium dynamics are effectively re-coupled from polymer to anion dynamics. Last, this concept of coordinating anions in TSPEs is successfully applied in LFP||Li metal cells leading to enhanced capacity retention (86% after 300 cycles) and an improved rate performance at 2C

    Gene variant effects across sodium channelopathies predict function and guide precision therapy

    Get PDF
    Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).Peer reviewe

    Widespread genomic influences on phenotype in Dravet syndrome, a 'monogenic' condition

    Get PDF
    Dravet syndrome is an archetypal rare severe epilepsy, considered "monogenic", typically caused by loss-of-function SCN1A variants. Despite a recognisable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. Polygenic risk scores for intelligence are lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors

    Early childhood epilepsies:epidemiology, classification, aetiology, and socio-economic determinants

    Get PDF
    Epilepsies of early childhood are frequently resistant to therapy and often associated with cognitive and behavioural comorbidity. Aetiology focused precision medicine, notably gene-based therapies, may prevent seizures and comorbidities. Epidemiological data utilizing modern diagnostic techniques including whole genome sequencing and neuroimaging can inform diagnostic strategies and therapeutic trials. We present a 3-year, multicentre prospective cohort study, involving all children under 3 years of age in Scotland presenting with epilepsies. We used two independent sources for case identification: clinical reporting and EEG record review. Capture-recapture methodology was then used to improve the accuracy of incidence estimates. Socio-demographic and clinical details were obtained at presentation, and 24 months later. Children were extensively investigated for aetiology. Whole genome sequencing was offered for all patients with drug-resistant epilepsy for whom no aetiology could yet be identified. Multivariate logistic regression modelling was used to determine associations between clinical features, aetiology, and outcome. Three hundred and ninety children were recruited over 3 years. The adjusted incidence of epilepsies presenting in the first 3 years of life was 239 per 100 000 live births [95% confidence interval (CI) 216–263]. There was a socio-economic gradient to incidence, with a significantly higher incidence in the most deprived quintile (301 per 100 000 live births, 95% CI 251–357) compared with the least deprived quintile (182 per 100 000 live births, 95% CI 139–233), χ2 odds ratio = 1.7 (95% CI 1.3–2.2). The relationship between deprivation and incidence was only observed in the group without identified aetiology, suggesting that populations living in higher deprivation areas have greater multifactorial risk for epilepsy. Aetiology was determined in 54% of children, and epilepsy syndrome was classified in 54%. Thirty-one per cent had an identified genetic cause for their epilepsy. We present novel data on the aetiological spectrum of the most commonly presenting epilepsies of early childhood. Twenty-four months after presentation, 36% of children had drug-resistant epilepsy (DRE), and 49% had global developmental delay (GDD). Identification of an aetiology was the strongest determinant of both DRE and GDD. Aetiology was determined in 82% of those with DRE, and 75% of those with GDD. In young children with epilepsy, genetic testing should be prioritized as it has the highest yield of any investigation and is most likely to inform precision therapy and prognosis. Epilepsies in early childhood are 30% more common than previously reported. Epilepsies of undetermined aetiology present more frequently in deprived communities. This likely reflects increased multifactorial risk within these populations

    Incidence and phenotypes of childhood-onset genetic epilepsies:a prospective population-based national cohort

    Get PDF
    Epilepsy is common in early childhood. In this age group it is associated with high rates of therapy-resistance, and with cognitive, motor, and behavioural comorbidity. A large number of genes, with wide ranging functions, are implicated in its aetiology, especially in those with therapy-resistant seizures. Identifying the more common single-gene epilepsies will aid in targeting resources, the prioritization of diagnostic testing and development of precision therapy. Previous studies of genetic testing in epilepsy have not been prospective and population-based. Therefore, the population-incidence of common genetic epilepsies remains unknown. The objective of this study was to describe the incidence and phenotypic spectrum of the most common single-gene epilepsies in young children, and to calculate what proportion are amenable to precision therapy. This was a prospective national epidemiological cohort study. All children presenting with epilepsy before 36 months of age were eligible. Children presenting with recurrent prolonged (&gt;10 min) febrile seizures; febrile or afebrile status epilepticus (&gt;30 min); or with clusters of two or more febrile or afebrile seizures within a 24-h period were also eligible. Participants were recruited from all 20 regional paediatric departments and four tertiary children’s hospitals in Scotland over a 3-year period. DNA samples were tested on a custom-designed 104-gene epilepsy panel. Detailed clinical information was systematically gathered at initial presentation and during follow-up. Clinical and genetic data were reviewed by a multidisciplinary team of clinicians and genetic scientists. The pathogenic significance of the genetic variants was assessed in accordance with the guidelines of UK Association of Clinical Genetic Science (ACGS). Of the 343 patients who met inclusion criteria, 333 completed genetic testing, and 80/333 (24%) had a diagnostic genetic finding. The overall estimated annual incidence of single-gene epilepsies in this well-defined population was 1 per 2120 live births (47.2/100 000; 95% confidence interval 36.9–57.5). PRRT2 was the most common single-gene epilepsy with an incidence of 1 per 9970 live births (10.0/100 000; 95% confidence interval 5.26–14.8) followed by SCN1A: 1 per 12 200 (8.26/100 000; 95% confidence interval 3.93–12.6); KCNQ2: 1 per 17 000 (5.89/100 000; 95% confidence interval 2.24–9.56) and SLC2A1: 1 per 24 300 (4.13/100 000; 95% confidence interval 1.07–7.19). Presentation before the age of 6 months, and presentation with afebrile focal seizures were significantly associated with genetic diagnosis. Single-gene disorders accounted for a quarter of the seizure disorders in this cohort. Genetic testing is recommended to identify children who may benefit from precision treatment and should be mainstream practice in early childhood onset epilepsy

    Classic ketogenic diet versus further antiseizure medicine in infants with drug-resistant epilepsy (KIWE): a UK, multicentre, open-label, randomised clinical trial

    Get PDF
    BACKGROUND: Many infancy-onset epilepsies have poor prognosis for seizure control and neurodevelopmental outcome. Ketogenic diets can improve seizures in children older than 2 years and adults who are unresponsive to antiseizure medicines. We aimed to establish the efficacy of a classic ketogenic diet at reducing seizure frequency compared with further antiseizure medicine in infants with drug-resistant epilepsy. METHODS: In this phase 4, open-label, multicentre, randomised clinical trial, infants aged 1-24 months with drug-resistant epilepsy (defined as four or more seizures per week and two or more previous antiseizure medications) were recruited from 19 hospitals in the UK. Following a 1-week or 2-week observation period, participants were randomly assigned using a computer-generated schedule, without stratification, to either a classic ketogenic diet or a further antiseizure medication for 8 weeks. Treatment allocation was masked from research nurses involved in patient care, but not from participants. The primary outcome was the median number of seizures per day, recorded during weeks 6-8. All analyses were by modified intention to treat, which included all participants with available data. Participants were followed for up to 12 months. All serious adverse events were recorded. The trial is registered with the European Union Drug Regulating Authorities Clinical Trials Database (2013-002195-40). The trial was terminated early before all participants had reached 12 months of follow-up because of slow recruitment and end of funding. FINDINGS: Between Jan 1, 2015, and Sept 30, 2021, 155 infants were assessed for eligibility, of whom 136 met inclusion criteria and were randomly assigned; 75 (55%) were male and 61 (45%) were female. 78 infants were assigned to a ketogenic diet and 58 to antiseizure medication, of whom 61 and 47, respectively, had available data and were included in the modifified intention-to-treat analysis at week 8. The median number of seizures per day during weeks 6-8, accounting for baseline rate and randomised group, was similar between the ketogenic diet group (5 [IQR 1-16]) and antiseizure medication group (3 [IQR 2-11]; IRR 1·33, 95% CI 0·84-2·11). A similar number of infants with at least one serious adverse event was reported in both groups (40 [51%] of 78 participants in the ketogenic diet group and 26 [45%] of 58 participants in the antiseizure medication group). The most common serious adverse events were seizures in both groups. Three infants died during the trial, all of whom were randomly assigned a ketogenic diet: one child (who also had dystonic cerebral palsy) was found not breathing at home; one child died suddenly and unexpectedly at home; and one child went into cardiac arrest during routine surgery under anaesthetic. The deaths were judged unrelated to treatment by local principal investigators and confirmed by the data safety monitoring committee. INTERPRETATION: In this phase 4 trial, a ketogenic diet did not differ in efficacy and tolerability to a further antiseizure medication, and it appears to be safe to use in infants with drug-resistant epilepsy. A ketogenic diet could be a treatment option in infants whose seizures continue despite previously trying two antiseizure medications. FUNDING: National Institute for Health and Care Research

    Genotype–phenotype associations in 1018 individuals with SCN1A‐related epilepsies

    Get PDF
    Objective: SCN1A variants are associated with epilepsy syndromes ranging from mild genetic epilepsy with febrile seizures plus (GEFS+) to severe Dravet syndrome (DS). Many variants are de novo, making early phenotype prediction difficult, and genotype–phenotype associations remain poorly understood. Methods: We assessed data from a retrospective cohort of 1018 individuals with SCN1A-related epilepsies. We explored relationships between variant characteristics (position, in silico prediction scores: Combined Annotation Dependent Depletion (CADD), Rare Exome Variant Ensemble Learner (REVEL), SCN1A genetic score), seizure characteristics, and epilepsy phenotype. Results: DS had earlier seizure onset than other GEFS+ phenotypes (5.3 vs. 12.0 months, p &lt; .001). In silico variant scores were higher in DS versus GEFS+ (p &lt; .001). Patients with missense variants in functionally important regions (conserved N-terminus, S4–S6) exhibited earlier seizure onset (6.0 vs. 7.0 months, p = .003) and were more likely to have DS (280/340); those with missense variants in nonconserved regions had later onset (10.0 vs. 7.0 months, p = .036) and were more likely to have GEFS+ (15/29, χ2 = 19.16, p &lt; .001). A minority of protein-truncating variants were associated with GEFS+ (10/393) and more likely to be located in the proximal first and last exon coding regions than elsewhere in the gene (9.7% vs. 1.0%, p &lt; .001). Carriers of the same missense variant exhibited less variability in age at seizure onset compared with carriers of different missense variants for both DS (1.9 vs. 2.9 months, p = .001) and GEFS+ (8.0 vs. 11.0 months, p = .043). Status epilepticus as presenting seizure type is a highly specific (95.2%) but nonsensitive (32.7%) feature of DS. Significance: Understanding genotype–phenotype associations in SCN1A-related epilepsies is critical for early diagnosis and management. We demonstrate an earlier disease onset in patients with missense variants in important functional regions, the occurrence of GEFS+ truncating variants, and the value of in silico prediction scores. Status epilepticus as initial seizure type is a highly specific, but not sensitive, early feature of DS

    Severe communication delays are independent of seizure burden and persist despite contemporary treatments in SCN1A + Dravet syndrome: Insights from the ENVISION natural history study

    Get PDF
    Objective: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment‐resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS. Methods: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent‐reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6–2:0 years:months (Y:M; youngest), 2:1–3:6 Y:M (middle), and 3:7–5:0 Y:M (oldest). Results: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow‐up was 17.5 months (range = .0–24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum–maximum] = 1.0 in the youngest [1.0–70.0] and middle [1.0–242.0] age groups and 4.5 [.0–2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores. Significance: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age
    corecore