9 research outputs found

    Tree diversity effects on root production, decomposition and nutrient cycling under global change.

    No full text
    L'hypothèse de l'assurance prévoit que les forêts composées de mélanges d'espèces d'arbres pourraient mieux résister aux conditions environnementales stressantes que les forêts composées d'une seule espèce d'arbre. La majorité des travaux antérieurs ont testé cette hypothèse en se focalisant sur la productivité et les variables de réponse associées sans prendre en compte les processus souterrains. L’objectif principal de ma thèse était d’étudier l’effet de la diversité des espèces d’arbres sur les processus souterrains impliqués dans la décomposition des racines à travers des gradients climatiques. J'ai émis l'hypothèse que le mélange d'espèces ayant des systèmes racinaires contrastés entraînerait une faible compétition souterraine, et se traduirait par la production de plus biomasse de racines fines. En outre, j'ai émis l'hypothèse que les racines ayant des caractéristiques chimiques et morphologiques contrastées dans les peuplements mixtes se décomposent plus rapidement. Dans des conditions de stress hydrique, j'ai émis l'hypothèse d'une décomposition plus lente mais d’une atténuation des mélanges d'arbres sur la décomposition en raison de l'amélioration des conditions micro-environnementales. Pour tester ces hypothèses, j'ai examiné la variation des caractéristiques fonctionnelles des racines et leurs conséquences sur les flux de C, N et P à l'échelle de l'écosystème à travers l’étude de : 1) la ségrégation verticale des racines et la biomasse des racines fines, 2) la dynamique des racines fines et les flux de nutriments associés et 3) la décomposition des racines fines et des feuilles mortes. Dans ce cadre, trois deux expériences de terrain ont été réalisé, l'une avec une expérience de plantation d'arbres de 10 ans avec du bouleau et du pin près de Bordeaux (expérience ORPHEE), la seconde le long d'un gradient latitudinal de forêts de hêtres matures dans les Alpes françaises (expérience BIOPROFOR).Les résultats obtenus montrent que les racines de bouleaux et de pins présentaient une distribution verticale similaire et une biomasse souterraine similaire de racines dans les mélanges d'arbres par rapport aux monocultures, contrairement à ma première hypothèse. Cependant, l'attribution plus importante du pin mais pas du bouleau à la croissance des racines dans les horizons du sol supérieur dans des conditions moins limitatives en eau suggère des conditions localement favorables qui peuvent conduire à une compétition asymétrique à la profondeur du sol. De plus, la production et la décomposition des racines fines étaient similaires dans les mélanges et dans les monocultures, en contradiction avec ma deuxième hypothèse. Il est intéressant de noter que les racines de bouleau, mais pas les racines de pin, ont libéré du P pendant leur décomposition, ce qui suggère un rôle important du bouleau dans le cycle du P et pour la nutrition en P des arbres sur ces sols sableux limités en P. Conformément à ma troisième hypothèse, j'ai observé une décomposition plus lente de la litière de feuilles et des racines fines en réponse à une sécheresse estivale prolongée, tout au long du gradient latitudinal dans les Alpes. Cependant, cette décomposition plus lente sous la sécheresse n'a pas été atténuée dans les peuplements forestiers à essences mixtes par rapport aux peuplements à essences uniques. Il est intéressant de noter qu’il y a une libération nette d'azote dans les racines fines en décomposition mais pas dans la litière de feuilles en décomposition, ce qui suggère un rôle distinct des racines fines dans le cycle de l'azote. En conclusion, j'ai constaté que le mélange des espèces d'arbres n'atténue pas les effets négatifs du changement climatique. Cette thèse démontre que la promotion de mélanges peut toujours être bénéfique pour au moins une des espèces d'arbres mélangées, par l'ajout d'espèces, car une espèce d'arbre peut en faciliter la nutrition minérale d’une autre par des flux souterrains de N et de P.The insurance hypothesis predicts that forests with tree species mixtures may resist better to stressful environmental conditions than forests composed of only one tree species. Most of the currently available literature tested this hypothesis for aboveground productivity and its related response variables, but less is known about belowground processes. In my PhD thesis, I studied the drivers of belowground productivity and decomposition across climatic gradients and how they are affected by tree mixtures. I hypothesized that mixing of tree species with contrasting rooting patterns and fine root morphologies, would result in a release of competitive pressure belowground, and translate into higher fine root standing biomass and increased fine root productivity. Moreover, I hypothesized that roots with contrasting chemical and morphological characteristics in mixed stands would decompose faster, which may be particularly important under nutrient-limited conditions. Under water-limiting conditions, such as during extreme summer drought, I hypothesized overall slower decomposition but an attenuating effect of tree mixtures on decomposition due to improved micro-environmental conditions, in particular for leaves, since roots decompose in a more buffered soil environment. To test these hypotheses I examined the variation in tree root functional traits (across- and within-species), and its consequences for fluxes of C, N and P at the ecosystem scale. I addressed three main objectives and associated research questions to quantify the interactive effect of tree mixtures and climate on: 1) vertical root segregation and fine root standing biomass, 2) fine root dynamics and their associated nutrient fluxes and 3) fine root- and leaf litter decomposition. I could benefit from two different field experiments for my work, one with a 10-year-old tree-plantation experiment with birch and pine close to Bordeaux (ORPHEE experiment), the second along a latitudinal gradient of mature beech forests in the French Alps (BIOPROFOR experiment).I observed that roots from the birch and pine tree-plantation showed similar vertical distribution and similar belowground root standing biomass in tree mixtures compared to monocultures, contrary to my first hypothesis. However, the greater allocation of pine but not of birch to root growth within the top soil horizons under less water-limiting conditions suggests locally favourable conditions that may lead to soil depth-specific asymmetric competition. In the same experiment, fine root production and decomposition were similar in mixtures and in monocultures, in contradiction with my second hypothesis. Moreover, I did not observe any interactive effects of tree mixtures with stand density or water availability. Interestingly though, birch roots, but not pine roots released P during root decomposition, which suggests an important role of birch in the P-cycle and for P nutrition of trees on these P-limited sandy soils. In line with my third hypothesis, I observed a slower decomposition of leaf litter and fine roots in response to reinforced and prolonged summer drought, irrespective of the position along the latitudinal gradient in the Alps. However, this slower decomposition under drought was not attenuated in forest stands with mixed tree species compared to single species stands. Compared to leaf litter, fine roots decomposed slower and released less C. Interestingly, I found a net N release in decomposing fine roots but not in decomposing leaf litter, which suggests a distinct role of fine roots in the N cycle. In conclusion, I found that mixing tree species did not attenuate negative effects of climate change. However, this thesis demonstrates that promoting mixtures can still be beneficial for at least one of the admixed tree species, through species addition (i.e., complementing one tree species with another tree species), as one tree species may facilitate another via belowground fluxes of N and P

    La biodiversité dans les écosystèmes forestiers est-elle susceptible de modifier les processus de production de racines et de décomposition des litières dans un contexte de changement climatique ?

    No full text
    The insurance hypothesis predicts that forests with tree species mixtures may resist better to stressful environmental conditions than forests composed of only one tree species. Most of the currently available literature tested this hypothesis for aboveground productivity and its related response variables, but less is known about belowground processes. In my PhD thesis, I studied the drivers of belowground productivity and decomposition across climatic gradients and how they are affected by tree mixtures. I hypothesized that mixing of tree species with contrasting rooting patterns and fine root morphologies, would result in a release of competitive pressure belowground, and translate into higher fine root standing biomass and increased fine root productivity. Moreover, I hypothesized that roots with contrasting chemical and morphological characteristics in mixed stands would decompose faster, which may be particularly important under nutrient-limited conditions. Under water-limiting conditions, such as during extreme summer drought, I hypothesized overall slower decomposition but an attenuating effect of tree mixtures on decomposition due to improved micro-environmental conditions, in particular for leaves, since roots decompose in a more buffered soil environment. To test these hypotheses I examined the variation in tree root functional traits (across- and within-species), and its consequences for fluxes of C, N and P at the ecosystem scale. I addressed three main objectives and associated research questions to quantify the interactive effect of tree mixtures and climate on: 1) vertical root segregation and fine root standing biomass, 2) fine root dynamics and their associated nutrient fluxes and 3) fine root- and leaf litter decomposition. I could benefit from two different field experiments for my work, one with a 10-year-old tree-plantation experiment with birch and pine close to Bordeaux (ORPHEE experiment), the second along a latitudinal gradient of mature beech forests in the French Alps (BIOPROFOR experiment).I observed that roots from the birch and pine tree-plantation showed similar vertical distribution and similar belowground root standing biomass in tree mixtures compared to monocultures, contrary to my first hypothesis. However, the greater allocation of pine but not of birch to root growth within the top soil horizons under less water-limiting conditions suggests locally favourable conditions that may lead to soil depth-specific asymmetric competition. In the same experiment, fine root production and decomposition were similar in mixtures and in monocultures, in contradiction with my second hypothesis. Moreover, I did not observe any interactive effects of tree mixtures with stand density or water availability. Interestingly though, birch roots, but not pine roots released P during root decomposition, which suggests an important role of birch in the P-cycle and for P nutrition of trees on these P-limited sandy soils. In line with my third hypothesis, I observed a slower decomposition of leaf litter and fine roots in response to reinforced and prolonged summer drought, irrespective of the position along the latitudinal gradient in the Alps. However, this slower decomposition under drought was not attenuated in forest stands with mixed tree species compared to single species stands. Compared to leaf litter, fine roots decomposed slower and released less C. Interestingly, I found a net N release in decomposing fine roots but not in decomposing leaf litter, which suggests a distinct role of fine roots in the N cycle. In conclusion, I found that mixing tree species did not attenuate negative effects of climate change. However, this thesis demonstrates that promoting mixtures can still be beneficial for at least one of the admixed tree species, through species addition (i.e., complementing one tree species with another tree species), as one tree species may facilitate another via belowground fluxes of N and P.L'hypothèse de l'assurance prévoit que les forêts composées de mélanges d'espèces d'arbres pourraient mieux résister aux conditions environnementales stressantes que les forêts composées d'une seule espèce d'arbre. La majorité des travaux antérieurs ont testé cette hypothèse en se focalisant sur la productivité et les variables de réponse associées sans prendre en compte les processus souterrains. L’objectif principal de ma thèse était d’étudier l’effet de la diversité des espèces d’arbres sur les processus souterrains impliqués dans la décomposition des racines à travers des gradients climatiques. J'ai émis l'hypothèse que le mélange d'espèces ayant des systèmes racinaires contrastés entraînerait une faible compétition souterraine, et se traduirait par la production de plus biomasse de racines fines. En outre, j'ai émis l'hypothèse que les racines ayant des caractéristiques chimiques et morphologiques contrastées dans les peuplements mixtes se décomposent plus rapidement. Dans des conditions de stress hydrique, j'ai émis l'hypothèse d'une décomposition plus lente mais d’une atténuation des mélanges d'arbres sur la décomposition en raison de l'amélioration des conditions micro-environnementales. Pour tester ces hypothèses, j'ai examiné la variation des caractéristiques fonctionnelles des racines et leurs conséquences sur les flux de C, N et P à l'échelle de l'écosystème à travers l’étude de : 1) la ségrégation verticale des racines et la biomasse des racines fines, 2) la dynamique des racines fines et les flux de nutriments associés et 3) la décomposition des racines fines et des feuilles mortes. Dans ce cadre, trois deux expériences de terrain ont été réalisé, l'une avec une expérience de plantation d'arbres de 10 ans avec du bouleau et du pin près de Bordeaux (expérience ORPHEE), la seconde le long d'un gradient latitudinal de forêts de hêtres matures dans les Alpes françaises (expérience BIOPROFOR).Les résultats obtenus montrent que les racines de bouleaux et de pins présentaient une distribution verticale similaire et une biomasse souterraine similaire de racines dans les mélanges d'arbres par rapport aux monocultures, contrairement à ma première hypothèse. Cependant, l'attribution plus importante du pin mais pas du bouleau à la croissance des racines dans les horizons du sol supérieur dans des conditions moins limitatives en eau suggère des conditions localement favorables qui peuvent conduire à une compétition asymétrique à la profondeur du sol. De plus, la production et la décomposition des racines fines étaient similaires dans les mélanges et dans les monocultures, en contradiction avec ma deuxième hypothèse. Il est intéressant de noter que les racines de bouleau, mais pas les racines de pin, ont libéré du P pendant leur décomposition, ce qui suggère un rôle important du bouleau dans le cycle du P et pour la nutrition en P des arbres sur ces sols sableux limités en P. Conformément à ma troisième hypothèse, j'ai observé une décomposition plus lente de la litière de feuilles et des racines fines en réponse à une sécheresse estivale prolongée, tout au long du gradient latitudinal dans les Alpes. Cependant, cette décomposition plus lente sous la sécheresse n'a pas été atténuée dans les peuplements forestiers à essences mixtes par rapport aux peuplements à essences uniques. Il est intéressant de noter qu’il y a une libération nette d'azote dans les racines fines en décomposition mais pas dans la litière de feuilles en décomposition, ce qui suggère un rôle distinct des racines fines dans le cycle de l'azote. En conclusion, j'ai constaté que le mélange des espèces d'arbres n'atténue pas les effets négatifs du changement climatique. Cette thèse démontre que la promotion de mélanges peut toujours être bénéfique pour au moins une des espèces d'arbres mélangées, par l'ajout d'espèces, car une espèce d'arbre peut en faciliter la nutrition minérale d’une autre par des flux souterrains de N et de P

    Tree diversity effects on root production, decomposition and nutrient cycling under global change.

    No full text
    L'hypothèse de l'assurance prévoit que les forêts composées de mélanges d'espèces d'arbres pourraient mieux résister aux conditions environnementales stressantes que les forêts composées d'une seule espèce d'arbre. La majorité des travaux antérieurs ont testé cette hypothèse en se focalisant sur la productivité et les variables de réponse associées sans prendre en compte les processus souterrains. L’objectif principal de ma thèse était d’étudier l’effet de la diversité des espèces d’arbres sur les processus souterrains impliqués dans la décomposition des racines à travers des gradients climatiques. J'ai émis l'hypothèse que le mélange d'espèces ayant des systèmes racinaires contrastés entraînerait une faible compétition souterraine, et se traduirait par la production de plus biomasse de racines fines. En outre, j'ai émis l'hypothèse que les racines ayant des caractéristiques chimiques et morphologiques contrastées dans les peuplements mixtes se décomposent plus rapidement. Dans des conditions de stress hydrique, j'ai émis l'hypothèse d'une décomposition plus lente mais d’une atténuation des mélanges d'arbres sur la décomposition en raison de l'amélioration des conditions micro-environnementales. Pour tester ces hypothèses, j'ai examiné la variation des caractéristiques fonctionnelles des racines et leurs conséquences sur les flux de C, N et P à l'échelle de l'écosystème à travers l’étude de : 1) la ségrégation verticale des racines et la biomasse des racines fines, 2) la dynamique des racines fines et les flux de nutriments associés et 3) la décomposition des racines fines et des feuilles mortes. Dans ce cadre, trois deux expériences de terrain ont été réalisé, l'une avec une expérience de plantation d'arbres de 10 ans avec du bouleau et du pin près de Bordeaux (expérience ORPHEE), la seconde le long d'un gradient latitudinal de forêts de hêtres matures dans les Alpes françaises (expérience BIOPROFOR).Les résultats obtenus montrent que les racines de bouleaux et de pins présentaient une distribution verticale similaire et une biomasse souterraine similaire de racines dans les mélanges d'arbres par rapport aux monocultures, contrairement à ma première hypothèse. Cependant, l'attribution plus importante du pin mais pas du bouleau à la croissance des racines dans les horizons du sol supérieur dans des conditions moins limitatives en eau suggère des conditions localement favorables qui peuvent conduire à une compétition asymétrique à la profondeur du sol. De plus, la production et la décomposition des racines fines étaient similaires dans les mélanges et dans les monocultures, en contradiction avec ma deuxième hypothèse. Il est intéressant de noter que les racines de bouleau, mais pas les racines de pin, ont libéré du P pendant leur décomposition, ce qui suggère un rôle important du bouleau dans le cycle du P et pour la nutrition en P des arbres sur ces sols sableux limités en P. Conformément à ma troisième hypothèse, j'ai observé une décomposition plus lente de la litière de feuilles et des racines fines en réponse à une sécheresse estivale prolongée, tout au long du gradient latitudinal dans les Alpes. Cependant, cette décomposition plus lente sous la sécheresse n'a pas été atténuée dans les peuplements forestiers à essences mixtes par rapport aux peuplements à essences uniques. Il est intéressant de noter qu’il y a une libération nette d'azote dans les racines fines en décomposition mais pas dans la litière de feuilles en décomposition, ce qui suggère un rôle distinct des racines fines dans le cycle de l'azote. En conclusion, j'ai constaté que le mélange des espèces d'arbres n'atténue pas les effets négatifs du changement climatique. Cette thèse démontre que la promotion de mélanges peut toujours être bénéfique pour au moins une des espèces d'arbres mélangées, par l'ajout d'espèces, car une espèce d'arbre peut en faciliter la nutrition minérale d’une autre par des flux souterrains de N et de P.The insurance hypothesis predicts that forests with tree species mixtures may resist better to stressful environmental conditions than forests composed of only one tree species. Most of the currently available literature tested this hypothesis for aboveground productivity and its related response variables, but less is known about belowground processes. In my PhD thesis, I studied the drivers of belowground productivity and decomposition across climatic gradients and how they are affected by tree mixtures. I hypothesized that mixing of tree species with contrasting rooting patterns and fine root morphologies, would result in a release of competitive pressure belowground, and translate into higher fine root standing biomass and increased fine root productivity. Moreover, I hypothesized that roots with contrasting chemical and morphological characteristics in mixed stands would decompose faster, which may be particularly important under nutrient-limited conditions. Under water-limiting conditions, such as during extreme summer drought, I hypothesized overall slower decomposition but an attenuating effect of tree mixtures on decomposition due to improved micro-environmental conditions, in particular for leaves, since roots decompose in a more buffered soil environment. To test these hypotheses I examined the variation in tree root functional traits (across- and within-species), and its consequences for fluxes of C, N and P at the ecosystem scale. I addressed three main objectives and associated research questions to quantify the interactive effect of tree mixtures and climate on: 1) vertical root segregation and fine root standing biomass, 2) fine root dynamics and their associated nutrient fluxes and 3) fine root- and leaf litter decomposition. I could benefit from two different field experiments for my work, one with a 10-year-old tree-plantation experiment with birch and pine close to Bordeaux (ORPHEE experiment), the second along a latitudinal gradient of mature beech forests in the French Alps (BIOPROFOR experiment).I observed that roots from the birch and pine tree-plantation showed similar vertical distribution and similar belowground root standing biomass in tree mixtures compared to monocultures, contrary to my first hypothesis. However, the greater allocation of pine but not of birch to root growth within the top soil horizons under less water-limiting conditions suggests locally favourable conditions that may lead to soil depth-specific asymmetric competition. In the same experiment, fine root production and decomposition were similar in mixtures and in monocultures, in contradiction with my second hypothesis. Moreover, I did not observe any interactive effects of tree mixtures with stand density or water availability. Interestingly though, birch roots, but not pine roots released P during root decomposition, which suggests an important role of birch in the P-cycle and for P nutrition of trees on these P-limited sandy soils. In line with my third hypothesis, I observed a slower decomposition of leaf litter and fine roots in response to reinforced and prolonged summer drought, irrespective of the position along the latitudinal gradient in the Alps. However, this slower decomposition under drought was not attenuated in forest stands with mixed tree species compared to single species stands. Compared to leaf litter, fine roots decomposed slower and released less C. Interestingly, I found a net N release in decomposing fine roots but not in decomposing leaf litter, which suggests a distinct role of fine roots in the N cycle. In conclusion, I found that mixing tree species did not attenuate negative effects of climate change. However, this thesis demonstrates that promoting mixtures can still be beneficial for at least one of the admixed tree species, through species addition (i.e., complementing one tree species with another tree species), as one tree species may facilitate another via belowground fluxes of N and P

    Effect of tree mixtures and water availability on belowground complementarity of fine roots of birch and pine planted on sandy podzol

    No full text
    Aims We investigated whether tree species growing in mixtures and under different water supply would segregate their fine roots vertically, produce more fine roots overall, or only in specific soil layers.Methods We examined the biomass, morphology, and distribution of fine roots down to 90 cm (forest floor, 0-5, 5-15, 15-30, 30-60, 60-90 cm) in pure and mixed stands of 10-year-old birch and pine trees, planted on a sandy podzol with discontinuous hardpan and seasonal high water table, following a randomized block design with four blocks receiving irrigation and four blocks left unirrigated during summer.Results Our results did not show any vertical root segregation between birch and pine in mixed plots. None of the species overyielded belowground throughout, but pine developed more roots in the top soil layer under irrigation. Both species had shallower fine root distributions in wet conditions, especially birch that was more plastic than pine in response to irrigation.Conclusions Both species followed similar ecological strategies, occupying and competing for the same layers of the soil profile, under both control and irrigated conditions. However, the greater allocation of pine roots at the top soil horizons under irrigated conditions suggests locally favourable niches can lead to depth-specific asymmetric competition. This sheds new light on vertical niche partitioning of young tree mixtures under varying environmental conditions

    Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest

    No full text
    An increasing number of studies demonstrate that tree species biodiversity can affect primary productivity and nutrient cycling in forests due to several factors, such as complementarity, facilitation or selection effects. For instance, resource partitioning in soils has been found to allow a more optimized nutrient uptake in mixed species plots compared with monocultures. However, how these effects will be modified by climate change – such as water availability – is not as well understood, especially in deep soil layers. Therefore, we specifically asked how water availability may influence the effect of tree mixtures on soil microorganism activity by measuring extracellular enzyme activities (EEAs) and available nutrients along the soil profile (down to 90 cm) in a 10-year-old plantation in southwestern France, which manipulates tree species composition (Pinus pinaster and Betula pendula, in monocultures and in mixed plots) and irrigation. Our results showed that EEAs directly depend on tree species composition and water conditions in interaction with soil depth; we found a positive effect of mixing birch and pine on carbon and nitrogen-related EEAs at an intermediate soil depth (15–30 cm soil layer), while the effect of increasing water availability increased phosphorus-related EEAs mostly in the upper soil layers (0–30 cm). However, we found no significant interactive effect between tree diversity and water availability on EEAs, underlying that the negative effect of lower water availability cannot be offset by the positive effect of mixing tree species. Differences in EEAs and available nutrients along the soil profile highlight the importance to look at different soil depths to better understand how nutrient cycling may be affected by increasing tree diversity and changes in water availability.Diversité et Productivité des forêTs impactées par le Changement Climatiqu
    corecore