13 research outputs found

    Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Serum amyloid P component (SAP, also known as Pentraxin 2; APCS gene) is a component of the humoral arm of innate immunity involved in resistance to bacterial infection and regulation of tissue remodeling. Here we investigate the role of SAP in antifungal resistance. Apcs-/- mice show enhanced susceptibility to A. fumigatus infection. Murine and human SAP bound conidia, activate the complement cascade and enhance phagocytosis by neutrophils. Apcs-/- mice are defective in vivo in terms of recruitment of neutrophils and phagocytosis in the lungs. Opsonic activity of SAP is dependent on the classical pathway of complement activation. In immunosuppressed mice, SAP administration protects hosts against A. fumigatus infection and death. In the context of a study of hematopoietic stem-cell transplantation, genetic variation in the human APCS gene is associated with susceptibility to invasive pulmonary aspergillosis. Thus, SAP is a fluid phase pattern recognition molecule essential for resistance against A. fumigatus.The contribution of the European Commission (ERC project PHII-669415; FP7 project 281608 TIMER; ESA/ITN, H2020-MSCA-ITN-2015-676129), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (project FIRB RBAP11H2R9), Associazione Italiana Ricerca sul Cancro (AIRC IG-19014 and IG-21714, AIRC 5 × 1000 −9962 and −21147), the Italian Ministry of Health, the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023), the Fundação para a Ciência e Tecnologia (FCT) (UIDB/50026/2020, UIDP/50026/2020, PTDC/SAU-SER/29635/2017, PTDC/MED-GEN/28778/2017, CEECIND/04058/2018 and CEECIND/03628/2017), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 847507 and the “la Caixa” Foundation (ID 100010434) and FCT under the agreement LCF/PR/HR17/52190003 is gratefully acknowledged.info:eu-repo/semantics/publishedVersio

    Nanobodies as Versatile Tool for Multiscale Imaging Modalities

    No full text
    Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies

    Breath acetone change during aerobic exercise is moderated by cardiorespiratory fitness

    No full text
    Objectives: Investigation of exhaled breath acetone (BrAce) during and after submaximal aerobic exercise as a volatile biomarker for metabolic responsiveness in high and lower-fit individuals. Design: Prospective cohort pilot-study. Methods: Twenty healthy adults (19-39 years) with different levels of cardiorespiratory fitness (VO2peak), determined by spiroergometry, were recruited. BrAce was repeatedly measured by proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) during 40 – 55 min submaximal cycling exercise and a post-exercise period of 180 min. Activity of ketone- and fat metabolism during and after exercise were assessed by indirect calorimetric calculation of fat oxidation rate and by measurement of venous β-hydroxybutyrate (βHB). Results: Maximum BrAce ratios were significantly higher during exercise in the high-fit individuals compared to the lower-fit group (t-test; p=0.03). Multivariate regression showed 0.4% (95%-CI=-0.2 – 0.9%, p=0.155) higher BrAce change during exercise for every ml kg-1 min-1 higher VO2peak. Differences of BrAce ratios during exercise were similar to fat oxidation rate changes, but without association to respiratory minute-volume. Furthermore, the high-fit group showed higher maximum BrAce increase rates (46% h-1) in the late post-exercise phase compared to the lower-fit group (29% h-1). Conclusions: High-fit young, healthy individuals have a higher increase in BrAce concentrations related to submaximal exercise than lower-fit subjects, indicating a stronger exercise-related activation of fat metabolism.ISSN:1752-7155ISSN:1752-716

    Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM

    Get PDF
    International audienceCytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenera-tional inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabi-dopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells

    HMGXB4 Targets <i>Sleeping Beauty</i> Transposition to Germinal Stem Cells

    Get PDF
    Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes

    ‘Dogfuck rapeworld’: Omegaverse fanfiction as a critical tool in analyzing the impact of social power structures on intimate relationships and sexual consent

    No full text
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. This article examines the Omegaverse–a subgenre of sexually explicit fanfiction–and its engagement with issues of socially constructed power differentials and sexual consent. I argue that sexually explicit fanfiction, and the Omegaverse in particular, can be used as a critical tool to examine the relationship between power and consent in accessible ways which allow for affective, emotional and intellectual engagement with these issues. I approach the Omegaverse as a body of work marked by intertextuality, where individual stories are in dialogue with not only the source material but also each other and with writers and readers’ knowledge of the real world. I apply sexual script theory to the analysis of three Omegaverse fanfiction stories to examine how such stories articulate and explore disjunctures between sexual scripts at the socially and culturally mediated, interpersonal and individual levels. I draw from theories of sexual consent and insights from Fan Studies to show how the Omegaverse offers strategies for negotiating meaningfully consensual intimate relationships within wider power structures and dominant sexual scripts

    Single-Cell Sequencing of Mouse Heart Immune Infiltrate in Pressure Overload-Driven Heart Failure Reveals Extent of Immune Activation

    No full text
    BACKGROUND: Inflammation is a key component of cardiac disease, with macrophages and T lymphocytes mediating essential roles in the progression to heart failure. Nonetheless, little insight exists on other immune subsets involved in the cardiotoxic response.METHODS: Here, we used single-cell RNA sequencing to map the cardiac immune composition in the standard murine nonischemic, pressure-overload heart failure model. By focusing our analysis on CD45(+) cells, we obtained a higher resolution identification of the immune cell subsets in the heart, at early and late stages of disease and in controls. We then integrated our findings using multiparameter flow cytometry, immunohistochemistry, and tissue clarification immunofluorescence in mouse and human.RESULTS: We found that most major immune cell subpopulations, including macrophages, B cells, T cells and regulatory T cells, dendritic cells, Natural Killer cells, neutrophils, and mast cells are present in both healthy and diseased hearts. Most cell subsets are found within the myocardium, whereas mast cells are found also in the epicardium. Upon induction of pressure overload, immune activation occurs across the entire range of immune cell types. Activation led to upregulation of key subset-specific molecules, such as oncostatin M in proinflammatory macrophages and PD-1 in regulatory T cells, that may help explain clinical findings such as the refractivity of patients with heart failure to anti-tumor necrosis factor therapy and cardiac toxicity during anti-PD-1 cancer immunotherapy, respectively.CONCLUSIONS: Despite the absence of infectious agents or an autoimmune trigger, induction of disease leads to immune activation that involves far more cell types than previously thought, including neutrophils, B cells, Natural Killer cells, and mast cells. This opens up the field of cardioimmunology to further investigation by using toolkits that have already been developed to study the aforementioned immune subsets. The subset-specific molecules that mediate their activation may thus become useful targets for the diagnostics or therapy of heart failure
    corecore