34 research outputs found

    Why don't we share data and code? Perceived barriers and benefits to public archiving practices

    Get PDF
    The biological sciences community is increasingly recognizing the value ofopen, reproducible and transparent research practices for science and societyat large. Despite this recognition, many researchers fail to share their dataand code publicly. This pattern may arise from knowledge barriers abouthow to archive data and code, concerns about its reuse, and misalignedcareer incentives. Here, we define, categorize and discuss barriers to dataand code sharing that are relevant to many research fields. We explorehow real and perceived barriers might be overcome or reframed in thelight of the benefits relative to costs. By elucidating these barriers and thecontexts in which they arise, we can take steps to mitigate them and alignour actions with the goals of open science, both as individual scientistsand as a scientific community

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O)

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Clinical whole-exome sequencing: are we there yet?

    No full text
    Background: Clinical laboratories began offering whole-exome sequencing in 2011 at a cost between 4,500and4,500 and 9,000. Reported detection rates for deleterious mutations range from 25 to 50%. Based on the experience of our clinical genetics service, actual success rates may be lower than estimated rates. We report results from our own experience along with a survey of clinical geneticists to ascertain (i) current success rates for causal gene detection in a clinical setting; (ii) if there are insurance authorization issues; and (iii) if turnaround times quoted by the clinical laboratories are accurate; we also gauge provider opinions toward clinical whole-exome sequencing. Methods: We reviewed our results and the results of a survey that was electronically distributed to 47 clinical genetics centers. Results: A total of 35 exome reports were available. If all positive results are collated, we observe a success rate of 22.8%. One result incorrectly identified a known benign variant as pathogenic. Some insurers covered all testing, whereas others denied any insurance coverage. Only three (23.1%) of our reports were available within the laboratory’s quoted turnaround times. More than 50% of clinicians queried in our survey had not ordered whole-exome sequencing at the current time, many stating concerns regarding interpretation, insurance coverage, and cost. Conclusion: Clinical whole-exome sequencing has proven diagnostic utility; however, currently many clinicians have concerns regarding interpretation of results, insurance coverage, and cost

    Managing work flow in high enrolling trials: The development and implementation of a sampling strategy in the PREPARE trial

    No full text
    Introduction: Pragmatic trials in comparative effectiveness research assess the effects of different treatment, therapeutic, or healthcare options in clinical practice. They are characterized by broad eligibility criteria and large sample sizes, which can lead to an unmanageable number of participants, increasing the risk of bias and affecting the integrity of the trial. We describe the development of a sampling strategy tool and its use in the PREPARE trial to circumvent the challenge of unmanageable work flow. Methods: Given the broad eligibility criteria and high fracture volume at participating clinical sites in the PREPARE trial, a pragmatic sampling strategy was needed. Using data from PREPARE, descriptive statistics were used to describe the use of the sampling strategy across clinical sites. A Chi-square test was performed to explore whether use of the sampling strategy was associated with a reduction in the number of missed eligible patients. Results: 7 of 20 clinical sites (35%) elected to adopt a sampling strategy. There were 1539 patients excluded due to the use of the sampling strategy, which represents 30% of all excluded patients and 20% of all patients screened for participation. Use of the sampling strategy was associated with lower odds of missed eligible patients (297/4545 (6.5%) versus 341/3200 (10.7%) p < 0.001). Conclusions: Implementing a sampling strategy in the PREPARE trial has helped to limit the number of missed eligible patients. This sampling strategy represents a simple, easy to use tool for managing work flow at clinical sites and maintaining the integrity of a large trial

    Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling

    Full text link
    BACKGROUND: Most arteriovenous malformations (AVMs) are localized and occur sporadically. However, they also can be multifocal in autosomal-dominant disorders, such as hereditary hemorrhagic telangiectasia and capillary malformation (CM)-AVM. Previously, we identified RASA1 mutations in 50% of patients with CM-AVM. Herein we studied non-RASA1 patients to further elucidate the pathogenicity of CMs and AVMs. METHODS: We conducted a genome-wide linkage study on a CM-AVM family. Whole-exome sequencing was also performed on 9 unrelated CM-AVM families. We identified a candidate gene and screened it in a large series of patients. The influence of several missense variants on protein function was also studied in vitro. RESULTS: We found evidence for linkage in 2 loci. Whole-exome sequencing data unraveled 4 distinct damaging variants in EPHB4 in 5 families that cosegregated with CM-AVM. Overall, screening of EPHB4 detected 47 distinct mutations in 54 index patients: 27 led to a premature stop codon or splice-site alteration, suggesting loss of function. The other 20 are nonsynonymous variants that result in amino acid substitutions. In vitro expression of several mutations confirmed loss of function of EPHB4. The clinical features included multifocal CMs, telangiectasias, and AVMs. CONCLUSIONS: We found EPHB4 mutations in patients with multifocal CMs associated with AVMs. The phenotype, CM-AVM2, mimics RASA1-related CM-AVM1 and also hereditary hemorrhagic telangiectasia. RASA1-encoded p120RASGAP is a direct effector of EPHB4. Our data highlight the pathogenetic importance of this interaction and indicts EPHB4-RAS-ERK signaling pathway as a major cause for AVMs

    Clinical whole-exome sequencing: are we there yet?

    No full text
    Background: Clinical laboratories began offering whole-exome sequencing in 2011 at a cost between 4,500and4,500 and 9,000. Reported detection rates for deleterious mutations range from 25 to 50%. Based on the experience of our clinical genetics service, actual success rates may be lower than estimated rates. We report results from our own experience along with a survey of clinical geneticists to ascertain (i) current success rates for causal gene detection in a clinical setting; (ii) if there are insurance authorization issues; and (iii) if turnaround times quoted by the clinical laboratories are accurate; we also gauge provider opinions toward clinical whole-exome sequencing. Methods: We reviewed our results and the results of a survey that was electronically distributed to 47 clinical genetics centers. Results: A total of 35 exome reports were available. If all positive results are collated, we observe a success rate of 22.8%. One result incorrectly identified a known benign variant as pathogenic. Some insurers covered all testing, whereas others denied any insurance coverage. Only three (23.1%) of our reports were available within the laboratory’s quoted turnaround times. More than 50% of clinicians queried in our survey had not ordered whole-exome sequencing at the current time, many stating concerns regarding interpretation, insurance coverage, and cost. Conclusion: Clinical whole-exome sequencing has proven diagnostic utility; however, currently many clinicians have concerns regarding interpretation of results, insurance coverage, and cost
    corecore