36 research outputs found

    Impacts of cutting frequency and position to tree line on herbage accumulation in silvopastoral grassland reveal potential for grassland conservation based on land use and cover information

    Get PDF
    In agricultural grassland, high herbage utilisation efficiency (HEFF), which is the proportion of gross live-green herbage production that is utilised before entering senescence, is ensured by frequent defoliation. The decision upon which defoliation frequency to apply depends on the farming intensity. Assuming a reduced total herbage accumulation near trees in silvopastoral systems, frequent defoliations with high HEFF become less worthwhile—at least in specific spatial configurations. This makes an extensive management near trees an interesting option because it promotes other grassland-related ecosystem services such as biodiversity. The present study first analysed the interaction between defoliation frequency and position to trees on the total, dead and live herbage accumulation and the HEFF at two silvopastoral sites with short-rotation coppices in Germany. In addition, the total grassland–tree interface in Germany was assessed from land use and land cover maps of Germany based on satellite data to approximate the potential of grassland extensification near trees. The total herbage accumulation near trees declined by up to 41% but the HEFF was not affected by the position. Consequently, any intensification is not paid-off by adequate productivity and herbage quality in terms of HEFF and tree-related losses in herbage accumulation are expected up to a distance of 4.5–6 m. Applying a 4.5 m border on satellite data, we found that up to 4.4% (approximately 2200 km2) of the total grassland area in Germany is at a tree interface and potentially suitable for extensification. These findings indicate substantial potential for biodiversity conservation in grasslands with low trade-off for high-quality yield.Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347Peer Reviewe

    A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring

    Get PDF
    The wealth of complementary data available from remote sensing missions can hugely aid efforts towards accurately determining land use and quantifying subtle changes in land use management or intensity. This study reviewed 112 studies on fusing optical and radar data, which offer unique spectral and structural information, for land cover and use assessments. Contrary to our expectations, only 50 studies specifically addressed land use, and five assessed land use changes, while the majority addressed land cover. The advantages of fusion for land use analysis were assessed in 32 studies, and a large majority (28 studies) concluded that fusion improved results compared to using single data sources. Study sites were small, frequently 300–3000 km 2 or individual plots, with a lack of comparison of results and accuracies across sites. Although a variety of fusion techniques were used, pre-classification fusion followed by pixel-level inputs in traditional classification algorithms (e.g., Gaussian maximum likelihood classification) was common, but often without a concrete rationale on the applicability of the method to the land use theme being studied. Progress in this field of research requires the development of robust techniques of fusion to map the intricacies of land uses and changes therein and systematic procedures to assess the benefits of fusion over larger spatial scales

    New Physics Searches at Kaon and Hyperon Factories

    No full text
    Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors

    New Physics Searches at Kaon and Hyperon Factories

    Get PDF
    Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors

    Early rhythm-control therapy in patients with atrial fibrillation

    No full text
    BACKGROUND Despite improvements in the management of atrial fibrillation, patients with this condition remain at increased risk for cardiovascular complications. It is unclear whether early rhythm-control therapy can reduce this risk. METHODS In this international, investigator-initiated, parallel-group, open, blinded-outcome-assessment trial, we randomly assigned patients who had early atrial fibrillation (diagnosed ≤1 year before enrollment) and cardiovascular conditions to receive either early rhythm control or usual care. Early rhythm control included treatment with antiarrhythmic drugs or atrial fibrillation ablation after randomization. Usual care limited rhythm control to the management of atrial fibrillation–related symptoms. The first primary outcome was a composite of death from cardiovascular causes, stroke, or hospitalization with worsening of heart failure or acute coronary syndrome; the second primary outcome was the number of nights spent in the hospital per year. The primary safety outcome was a composite of death, stroke, or serious adverse events related to rhythm-control therapy. Secondary outcomes, including symptoms and left ventricular function, were also evaluated. RESULTS In 135 centers, 2789 patients with early atrial fibrillation (median time since diagnosis, 36 days) underwent randomization. The trial was stopped for efficacy at the third interim analysis after a median of 5.1 years of follow-up per patient. A first-primary-outcome event occurred in 249 of the patients assigned to early rhythm control (3.9 per 100 person-years) and in 316 patients assigned to usual care (5.0 per 100 person-years) (hazard ratio, 0.79; 96% confidence interval, 0.66 to 0.94; P=0.005). The mean (±SD) number of nights spent in the hospital did not differ significantly between the groups (5.8±21.9 and 5.1±15.5 days per year, respectively; P=0.23). The percentage of patients with a primary safety outcome event did not differ significantly between the groups; serious adverse events related to rhythm-control therapy occurred in 4.9% of the patients assigned to early rhythm control and 1.4% of the patients assigned to usual care. Symptoms and left ventricular function at 2 years did not differ significantly between the groups. CONCLUSIONS Early rhythm-control therapy was associated with a lower risk of adverse cardiovascular outcomes than usual care among patients with early atrial fibrillation and cardiovascular conditions

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    DUNE Offline Computing Conceptual Design Report

    No full text
    International audienceThis document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment
    corecore