23 research outputs found
An evolutionary and structural characterization of mammalian protein complex organization
Background: We have recently released a comprehensive, manually curated database of mammalian protein complexes called CORUM. Combining CORUM with other resources, we assembled a dataset of over 2700 mammalian complexes. The availability of a rich information resource allows us to search for organizational properties concerning these complexes. Results: As the complexity of a protein complex in terms of the number of unique subunits increases, we observed that the number of such complexes and the mean non-synonymous to synonymous substitution ratio of associated genes tend to decrease. Similarly, as the number of different complexes a given protein participates in increases, the number of such proteins and the substitution ratio of the associated gene also tend to decrease. These observations provide evidence relating natural selection and the organization of mammalian complexes. We also observed greater homogeneity in terms of predicted protein isoelectric points, secondary structure and substitution ratio in annotated versus randomly generated complexes. A large proportion of the protein content and interactions in the complexes could be predicted from known binary protein-protein and domain-domain interactions. In particular, we found that large proteins interact preferentially with much smaller proteins. Conclusions: We observed similar trends in yeast and other data. Our results support the existence of conserved relations associated with the mammalian protein complexes
Classical and ab initio preparation of reliable structures for polymeric coordination compounds
The detailed investigation of electronic and magnetic properties of polymeric
coordination materials with accurate ab initio quantum mechanical methods is
often computationally extremely demanding because of the large number of atoms
in the unit cell. Moreover, usually the available structural data are
insufficient or poorly determined, especially when the structure contains
hydrogen atoms. In order to be able to perform controlled ab initio
calculations on reliable structures, we use a two-step approach to
systematically prepare model structures for polymeric coordination compound
systems and to relax them to their equilibrium configuration. First, a
structure is constructed on the basis of a crystallographic database and
optimized by force field methods; in the second step, the structure is relaxed
by ab initio quantum mechanical molecular dynamics. With this structure, we
perform accurate electronic structure calculations. We will apply this
procedure to a Fe(II) triazole compound and to a coordination polymer of Cu(II)
ions with 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene.Comment: 7 pages, 5 eps figures; proceedings of the symposium on "Spin- and
charge-correlations in molecule-based materials", October 2005, Koenigstein
(Taunus), Germany, final versio
Inactivation and activation of Ras by the neurotrophin receptor p75
The neurotrophin receptor p75 induces neurotrophic and/or apoptotic signalling pathways and can also cooperate with the neurotrophic Trk receptor tyrosine kinases. Its intracellular part encloses a so-called 'death domain' with a segment similar to the wasp venom mastoparan which binds small GTPases such as Rho. To study possible interactions of p75 and Ras (and Rho) we used wild-type and mutant genes of p75 stably expressed by MDCK cells which normally have neither Trk nor p75. We found that p75 can directly bind the GTPases Ras and Rho and that the unstimulated p75 inactivates total cellular Ras through a differential influence on the dissociation of GDP and GTP from Ras and an exchange of bound Ras.GDP for free Ras.GTP. These properties of p75 could also be demonstrated in vitro and should therefore be cell type-independent. Stimulation of p75 with nerve growth factor causes Ras activation via adapter proteins known from Trk signalling and induces rapid outgrowth of cellular processes. Both inactivation and activation of Ras by p75 are controlled by the phosphorylation state of the receptor's two intracellular tyrosines. p75 also influences Rho activation and inactivation, and the combined interactions of the receptor with the two GTPases Ras and Rho can regulate neurite formation in an efficient, synergistic way
Effect of mutation of two critical glutamic acid residues on the activity and stability of human carboxypeptidase M and characterization of its signal for glycosylphosphatidylinositol anchoring.
Human carboxypeptidase (CP) M was expressed in baculovirus-infected insect cells in a glycosylphosphatidylinositol-anchored form, whereas a truncated form, lacking the putative signal sequence for glycosylphosphatidylinositol anchoring, was secreted at high levels into the medium. Both forms had lower molecular masses (50 kDa) than native placental CPM (62 kDa), indicating minimal glycosylation. The predicted glycosylphosphatidylinositol-anchor attachment site was investigated by mutation of Ser(406) to Ala, Thr or Pro and expression in HEK-293 and COS-7 cells. The wild-type and S406A and S406T mutants were expressed on the plasma membrane in glycosylphosphatidylinositol-anchored form, but the S406P mutant was not and was retained in a perinuclear location. The roles of Glu(260) and Glu(264) in CPM were investigated by site-directed mutagenesis. Mutation of Glu(260) to Gln had minimal effects on kinetic parameters, but decreased heat stability, whereas mutation to Ala reduced the k(cat)/ K(m) by 104-fold and further decreased stability. In contrast, mutation of Glu(264) to Gln resulted in a 10000-fold decrease in activity, but the enzyme still bound to p-aminobenzoylarginine-Sepharose and was resistant to trypsin treatment, indicating that the protein was folded properly. These results show that Glu(264) is the critical catalytic glutamic acid and that Glu(260) probably stabilizes the conformation of the active site