37 research outputs found

    Splice-site mutations cause Rrp6-mediated nuclear retention of the unspliced RNAs and transcriptional down-regulation of the splicing-defective genes

    Get PDF
    Background: Eukaryotic cells have developed surveillance mechanisms to prevent the expression of aberrant transcripts. An early surveillance checkpoint acts at the transcription site and prevents the release of mRNAs that carry processing defects. The exosome subunit Rrp6 is required for this checkpoint in Saccharomyces cerevisiae, but it is not known whether Rrp6 also plays a role in mRNA surveillance in higher eukaryotes. Methodology/Principal Findings: We have developed an in vivo system to study nuclear mRNA surveillance in Drosophila melanogaster. We have produced S2 cells that express a human b-globin gene with mutated splice sites in intron 2 (mut bglobin). The transcripts encoded by the mut b-globin gene are normally spliced at intron 1 but retain intron 2. The levels of the mut b-globin transcripts are much lower than those of wild type (wt) ß-globin mRNAs transcribed from the same promoter. We have compared the expression of the mut and wt b-globin genes to investigate the mechanisms that downregulate the production of defective mRNAs. Both wt and mut b-globin transcripts are processed at the 39, but the mut bglobin transcripts are less efficiently cleaved than the wt transcripts. Moreover, the mut b-globin transcripts are less efficiently released from the transcription site, as shown by FISH, and this defect is restored by depletion of Rrp6 by RNAi. Furthermore, transcription of the mut b-globin gene is significantly impaired as revealed by ChIP experiments that measure the association of the RNA polymerase II with the transcribed genes. We have also shown that the mut b-globin gene shows reduced levels of H3K4me3. Conclusions/Significance: Our results show that there are at least two surveillance responses that operate cotranscriptionally in insect cells and probably in all metazoans. One response requires Rrp6 and results in the inefficient release of defective mRNAs from the transcription site. The other response acts at the transcription level and reduces the synthesis of the defective transcripts through a mechanism that involves histone modifications

    Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region

    Get PDF
    Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. “Normal” termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.peer-reviewe

    Tethered Function Assays to Elucidate the Role of RNA-Binding Proteins.

    No full text
    The fate of each RNA molecule is strongly determined by RNA-binding proteins (RBPs) which accompany transcripts from its synthesis to its degradation. To elucidate the effect of a specific RBP on bound RNA, it can be artificially recruited to a specific site on a reporter mRNA that can be followed by a variety of methods. In this so-called tethering assay, the protein of interest (POI) is fused to the coat protein of the MS2 bacteriophage and expressed in your favorite cells together with a reporter gene containing MS2 binding sites. The MS2 binding sites are recognized by the MS2 coat protein (MS2CP) with high affinity and specificity and by doing so, the POI is tethered to the reporter RNA. Here, we describe how with the help of this assay the human cytoplasmic poly(A) binding protein is recruited to a mini-μ RNA reporter, thereby influencing the stability of the reporter transcript

    Equal transcription rates of productively and nonproductively rearranged immunoglobulin μ heavy chain alleles in a pro-B cell line

    No full text
    During B cell maturation, immunoglobulin (Ig) genes frequently acquire premature translation-termination codons (PTCs) as a result of the somatic rearrangement of V, D, and J gene segments. However, it is essential for a B lymphocyte to produce only one kind of antibody and therefore to ensure that the heavy and light chain polypeptides are expressed exclusively from the corresponding functional alleles, whereas no protein is made from the nonproductively rearranged alleles. At the post-transcriptional level, a well-studied mRNA quality control mechanism, termed nonsense-mediated mRNA decay (NMD), recognizes and degrades PTC-containing mRNAs in a translation-dependent manner. In addition, transcriptional silencing of PTC-containing Ig-μ and Ig-γ heavy chain reporter genes was observed in HeLa cells. To investigate the silencing of nonproductively rearranged Ig genes in a more physiological context, we analyzed a monoclonal line of immortalized murine pro-B cells harboring one productively (PTC−) and one nonproductively (PTC+) rearranged Ig-μ heavy chain allele. We show that the steady-state abundance of PTC+ mRNA was ∼40-fold lower when compared to that of the PTC− mRNA. However, both the PTC+ and PTC− allele seemed to be equally well transcribed since the abundances of PTC+ and PTC− pre-mRNA were very similar and chromatin immunoprecipitations revealed comparable occupancy of RNA polymerase II and acetylated histone H3 on both alleles. Altogether, we found no evidence for transcriptional silencing of the PTC+ allele in this pro-B cell line; hence, the efficient down-regulation of the PTC+ Ig-μ mRNA results entirely from NMD

    Überlebenschancen von Krebspatienten in Deutschland - auf dem Weg zu repräsentativen, vergleichbaren Aussagen

    Get PDF
    Mit über 435 000 Neuerkrankten pro Jahr in Deutschland und fast 210 000 Sterbefällen stellen Krebserkrankungen große Herausforderungen an das Gesundheitswesen. Inwieweit Fortschritte in der therapeutischen Versorgung sowie Maßnahmen zur Sekundärprävention im Laufe der Zeit zu einem verbesserten Überleben der Patienten geführt haben, und ob diesbezüglich relevante Qualitätsunterschiede innerhalb Deutschlands oder im Verhältnis zu anderen Industrienationen bestehen, lässt sich nur mit den Daten epidemiologischer Krebsregister ermitteln. Bei dem Vergleich von krebsspezifischen Überlebensraten und der Interpretation sind jedoch verschiedene Faktoren im Bereich der Methodik und Datenqualität zu berücksichtigen. Es werden potentielle Einflussgrößen im Bereich der Krebsregistrierung wie Rechenalgorithmen, Bezugspopulationen, Vollzähligkeit sowie Qualität des Follow-up diskutiert. Abschließend werden erstmals Empfehlungen für den einheitlichen Umgang mit diesen Parametern in Deutschland vorgestellt, um eine Vergleichbarkeit der publizierten Daten zu erreichen.Cancer is an important issue within the German health care system with an estimated annual number of 435 000 incident cases and almost 210 000 deaths. Data of population-based cancer registries enable us to identify improvements of survival in oncological patients due to progress in therapeutic care and secondary prevention, as well as to investigate regional and international differences of this outcome. Comparing cancer survival rates, however, requires considering the impact of both methodical approaches and data quality. Potential factors of influence like algorithms, reference population, completeness of case ascertainment and quality of follow-up are discussed. For the first time harmonized proceedings are recommended in order to achieve comparability of population-based cancer survival rates in Germany
    corecore