41 research outputs found

    Describing the ground state of quantum systems through statistical mechanics

    Get PDF
    We present a statistical mechanics description to study the ground state of quantum systems. In this approach, averages for the complete system are calculated over the non-interacting energy levels. Taking different interaction parameter, the particles of the system fall into non-interacting microstates, corresponding to different occupation probabilities for these energy levels. Using this novel thermodynamic interpretation we study the Hubbard model for the case of two electrons in two sites and for the half-filled band on a one-dimensional lattice. We show that the form of the entropy depends on the specific system considered.Comment: 8 page

    Generalizing Planck's distribution by using the Carati-Galgani model of molecular collisions

    Get PDF
    Classical systems of coupled harmonic oscillators are studied using the Carati-Galgani model. We investigate the consequences for Einstein's conjecture by considering that the exchanges of energy, in molecular collisions, follows the L\'evy type statistics. We develop a generalization of Planck's distribution admitting that there are analogous relations in the equilibrium quantum statistical mechanics of the relations found using the nonequilibrium classical statistical mechanics approach. The generalization of Planck's law based on the nonextensive statistical mechanics formalism is compatible with the our analysis.Comment: 10 pages, 3 figure

    A simple model for magnetism in itinerant electron systems

    Full text link
    A new lattice model of interacting electrons is presented. It can be viewed as a classical Hubbard model in which the energy associated to electron itinerance is proportional to the total number of possible electron jumps. Symmetry properties of the Hubbard model are preserved. In the half-filled band with strong interaction the model becomes the Ising model. The main features of the magnetic behavior of the model in the one-dimensional and mean-field cases are studied.Comment: 9 pages, 3 figures, to be published in Physica

    Is there still room to explore cyclodextrin glycosyltransferase-producers in Brazilian biodiversity?

    Get PDF
    In the present work, different Brazilian biomes aiming to identify and select cyclodextrin glycosyltransferase-producer bacteria are explored. This enzyme is responsible for converting starch to cyclodextrin, which are interesting molecules to carry other substances of economic interest applied by textile, pharmaceutical, food, and other industries. Based on the enzymatic index, 12 bacteria were selected and evaluated, considering their capacity to produce the enzyme in culture media containing different starch sources. It was observed that the highest yields were presented by the bacteria when grown in cornstarch. These bacteria were also characterized by sequencing of the 16S rRNA region and were classified as Bacillus, Paenibacillus, Gracilibacillus and Solibacillus.publishersversionpublishe

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore