1,520 research outputs found

    First-Principles Computation of YVO3; Combining Path-Integral Renormalization Group with Density-Functional Approach

    Full text link
    We investigate the electronic structure of the transition-metal oxide YVO3 by a hybrid first-principles scheme. The density-functional theory with the local-density-approximation by using the local muffin-tin orbital basis is applied to derive the whole band structure. The electron degrees of freedom far from the Fermi level are eliminated by a downfolding procedure leaving only the V 3d t2g Wannier band as the low-energy degrees of freedom, for which a low-energy effective model is constructed. This low-energy effective Hamiltonian is solved exactly by the path-integral renormalization group method. It is shown that the ground state has the G-type spin and the C-type orbital ordering in agreement with experimental indications. The indirect charge gap is estimated to be around 0.7 eV, which prominently improves the previous estimates by other conventional methods

    The Size of the Radio-Emitting Region in Low-luminosity Active Galactic Nuclei

    Full text link
    We have used the VLA to study radio variability among a sample of 18 low luminosity active galactic nuclei (LLAGNs), on time scales of a few hours to 10 days. The goal was to measure or limit the sizes of the LLAGN radio-emitting regions, in order to use the size measurements as input to models of the radio emission mechanisms in LLAGNs. We detect variability on typical time scales of a few days, at a confidence level of 99%, in half of the target galaxies. Either variability that is intrinsic to the radio emitting regions, or that is caused by scintillation in the Galactic interstellar medium, is consistent with the data. For either interpretation, the brightness temperature of the emission is below the inverse-Compton limit for all of our LLAGNs, and has a mean value of about 1E10 K. The variability measurements plus VLBI upper limits imply that the typical angular size of the LLAGN radio cores at 8.5 GHz is 0.2 milliarcseconds, plus or minus a factor of two. The ~ 1E10 K brightness temperature strongly suggests that a population of high-energy nonthermal electrons must be present, in addition to a hypothesized thermal population in an accretion flow, in order to produce the observed radio emission.Comment: 61 pages, 17 figures, 10 tables. Accepted for publication in the Astrophysical Journa

    Lattice Distortion and Magnetic Ground State of YTiO3_3 and LaTiO3_3

    Full text link
    Effects of lattice distortion on the magnetic ground state of YTiO3_3 and LaiO3_3 are investigated on the basis accurate tight-binding parametrization of the t2gt_{2g} electronic structure extracted from the local-density approximation. The complexity of these compounds is related with the fact that the t2gt_{2g}-level splitting, caused by lattice distortions, is comparable with the energies of superexchange and spin-orbit interactions. Therefore, all these interactions are equally important and should be treated on an equal footing. The Hartree-Fock approximation fails to provide a coherent description simultaneously for YTiO3_3 and LaTiO3_3, and it is essential to go beyond.Comment: 4 pages, 3 figures (good quality figures are available via e-mail

    An Essential Role for Thymic Mesenchyme in Early T Cell Development

    Get PDF
    We show that the mesenchymal cells that surround the 12-d mouse embryo thymus are necessary for T cell differentiation. Thus, epithelial lobes with attached mesenchyme generate all T cell populations in vitro, whereas lobes from which mesenchyme has been removed show poor lymphopoiesis with few cells progressing beyond the CD4−CD8− stage of development. Interestingly, thymic mesenchyme is derived from neural crest cells, and extirpation of the region of the neural crest involved results in impaired thymic development and craniofacial abnormalities similar to the group of clinical defects found in the DiGeorge syndrome

    Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC)

    Get PDF
    We developed a prototype time projection chamber using gas electron multipliers (GEM-TPC) for high energy heavy ion collision experiments. To investigate its performance, we conducted a beam test with 3 kinds of gases (Ar(90%)-CH4(10%), Ar(70%)-C2H6(30%) and CF4). Detection efficiency of 99%, and spatial resolution of 79 μ\mum in the pad-row direction and 313 μ\mum in the drift direction were achieved. The test results show that the GEM-TPC meets the requirements for high energy heavy ion collision experiments. The configuration and performance of the GEM-TPC are described.Comment: 18 pages, 12 figures, published online in Nucl. Instr. and Meth.

    Estimates of electronic interaction parameters for LaMMO3_3 compounds (MM=Ti-Ni) from ab-initio approaches

    Full text link
    We have analyzed the ab-initio local density approximation band structure calculations for the family of perovskite oxides, LaMMO3_3 with MM=Ti-Ni within a parametrized nearest neighbor tight-binding model and extracted various interaction strengths. We study the systematics in these interaction parameters across the transition metal series and discuss the relevance of these in a many-body description of these oxides. The results obtained here compare well with estimates of these parameters obtained via analysis of electron spectroscopic results in conjunction with the Anderson impurity model. The dependence of the hopping interaction strength, t, is found to be approximately r3r^{-3}.Comment: 18 pages; 1 tex file+9 postscript files (appeared in Phys Rev B Oct 15,1996

    Ferromagnetic zigzag chains and properties of the charge ordered perovskite manganites

    Full text link
    The low-temperature properties of the so-called ''charge ordered'' state in 50% doped perovskite manganites are described from the viewpoint of the magnetic spin ordering. In these systems, the zigzag antiferromagnetic ordering, combined with the double-exchange physics, effectively divides the whole sample into the one-dimensional ferromagnetic zigzag chains and results in the anisotropy of electronic properties. The electronic structure of one such chain is described by an effective 3×\times3 Hamiltonian in the basis of Mn(3deg3de_g) orbitals. We treat this problem analytically and consider the following properties: (i) the nearest-neighbor magnetic interactions; (ii) the distribution of the Mn(3deg3de_g) and Mn(4p4p) states near the Fermi level, and their contribution to the optical conductivity and the resonant x-ray scattering near the Mn KK-absorption edge. We argue that the anisotropy of magnetic interactions in the double-exchange limit, combined with the isotropic superexchange interactions, readily explains both the local and the global stability of the zigzag antiferromagnetic state. The two-fold degeneracy of ege_g levels plays a very important role in the problem and explains the insulating behavior of the zigzag chain, as well as the appearance of the orbital ordering in the double-exchange model. Importantly, however, the charge ordering itself is expected to play only a minor role and is incompatible with the ferromagnetic coupling within the chain. We also discuss possible effects of the Jahn-Teller distortion and compare the tight-binding picture with results of band structure calculations in the local-spin-density approximation.Comment: 35 pages, 8 figure

    Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells

    Get PDF
    AMT-L is supported by the School of Biology, University of St Andrews. AMT-L, PAR and FJGM were funded by the Anonymous Trust, University of St Andrews. PAR is supported by the Melville Trust for the Care and Cure of Cancer. The mass spectrometry work was supported by the Wellcome Trust [grant number 094476/Z/10/Z], which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews. The clinical study was supported by the Department of Pathology, Albert Einstein College of Medicine/ Montefiore Medical Center.Crumbs3 (CRB3) is a component of epithelial junctions that has been implicated in apical-basal polarity, apical identity, apical stability, cell adhesion and cell growth. CRB3 undergoes alternative splicing to yield two variants: CRB3a and CRB3b. Here, we describe novel data demonstrating that as with previous studies on CRB3a, CRB3b also promotes the formation of tight junctions. However, significantly we demonstrate that the 4.1-ezrin-radixin-moesin (FERM) binding motif (FBM) of CRB3b is required for CRB3b functionality and that ezrin binds to the FBM of CRB3b. Furthermore, we show that ezrin contributes to CRB3b functionality and the correct distribution of tight junction proteins. We demonstrate that both CRB3 isoforms are required for the production of functionally mature tight junctions and also the localization of ezrin to the plasma membrane. Finally, we demonstrate that reduced CRB3b expression in head and neck squamous cell carcinoma (HNSCC) correlates with cytoplasmic ezrin, a biomarker for aggressive disease, and show evidence that whilst CRB3a expression has no effect, low CRB3b and high cytoplasmic ezrin expression combined may be prognostic for HNSCC.PostprintPeer reviewe
    corecore