3,536 research outputs found

    Sand in the wheels, or oiling the wheels, of international finance? : New Labour's appeal to a 'new Bretton Woods'

    Get PDF
    Tony Blair’s political instinct typically is to associate himself only with the future. As such, his explicit appeal to ‘the past’ in his references to New Labour’s desire to establish a “new Bretton Woods” is sufficient in itself to arouse some degree of analytical curiosity (see Blair 1998a). The fact that this appeal was made specifically in relation to Bretton Woods is even more interesting. The resonant image of the international economic context established by the original Bretton Woods agreements invokes a style and content of policy-making which Tony Blair typically dismisses as neither economically nor politically consistent with his preferred vision of the future (see Blair 2000c, 2001b)

    Detection methods for non-Gaussian gravitational wave stochastic backgrounds

    Get PDF
    We address the issue of finding an optimal detection method for a discontinuous or intermittent gravitational wave stochastic background. Such a signal might sound something like popcorn popping. We derive an appropriate version of the maximum likelihood detection statistic, and compare its performance to that of the standard cross-correlation statistic both analytically and with Monte Carlo simulations. The maximum likelihood statistic performs better than the cross-correlation statistic when the background is sufficiently non-Gaussian. For both ground and space based detectors, this results in a gain factor, ranging roughly from 1 to 3, in the minimum gravitational-wave energy density necessary for detection, depending on the duty cycle of the background. Our analysis is exploratory, as we assume that the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two collocated, aligned detectors. Before this detection method can be used in practice with real detector data, further work is required to generalize our analysis to accommodate separated, misaligned detectors with realistic, colored, non-Gaussian noise.Comment: 25 pages, 12 figures, submitted to physical review D, added revisions in response to reviewers comment

    The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300

    Full text link
    We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point source population to be consistent with other late-type galaxies hosting young stellar populations (<50 Myr). We find XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.Comment: 23 pages, 13 figures. Accepted to Ap

    Virulence and Pathogen Multiplication: A Serial Passage Experiment in the Hypervirulent Bacterial Insect-Pathogen Xenorhabdus nematophila

    Get PDF
    The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure
    • 

    corecore